Organism : Bacillus cereus ATCC14579 | Module List :
BC0043

Methionyl-tRNA synthetase (NCBI ptt file)

CircVis
Functional Annotations (9)
Function System
Methionyl-tRNA synthetase cog/ cog
tRNA binding go/ molecular_function
methionine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
methionyl-tRNA aminoacylation go/ biological_process
Selenocompound metabolism kegg/ kegg pathway
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
metG tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0043
(Mouseover regulator name to see its description)

BC0043 is regulated by 26 influences and regulates 0 modules.
Regulators for BC0043 (26)
Regulator Module Operator
BC1282 296 tf
BC1603 296 tf
BC1680 296 tf
BC3389 296 tf
BC4081 296 tf
BC4170 296 tf
BC4174 296 tf
BC4672 296 tf
BC5176 296 tf
BC5256 296 tf
BC5265 296 tf
BC5409 296 tf
BC5481 296 tf
BC0586 273 tf
BC0648 273 tf
BC1329 273 tf
BC1477 273 tf
BC1710 273 tf
BC1719 273 tf
BC1818 273 tf
BC2988 273 tf
BC3976 273 tf
BC4001 273 tf
BC4672 273 tf
BC5339 273 tf
BC5373 273 tf

Warning: BC0043 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4462 2.30e+00 ga.AgGagggg
Loader icon
4463 3.10e+04 GtCGaTGAGcC
Loader icon
4506 2.10e+02 AAAgGGAG
Loader icon
4507 6.00e+02 TTgTcCCtCcC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0043

BC0043 is enriched for 9 functions in 3 categories.
Enrichment Table (9)
Function System
Methionyl-tRNA synthetase cog/ cog
tRNA binding go/ molecular_function
methionine-tRNA ligase activity go/ molecular_function
ATP binding go/ molecular_function
cytoplasm go/ cellular_component
methionyl-tRNA aminoacylation go/ biological_process
Selenocompound metabolism kegg/ kegg pathway
Aminoacyl-tRNA biosynthesis kegg/ kegg pathway
metG tigr/ tigrfam
Module neighborhood information for BC0043

BC0043 has total of 38 gene neighbors in modules 273, 296
Gene neighbors (38)
Gene Common Name Description Module membership
BC0043 BC0043 Methionyl-tRNA synthetase (NCBI ptt file) 273, 296
BC0071 BC0071 Hypoxanthine-guanine phosphoribosyltransferase (NCBI ptt file) 273, 439
BC0221 BC0221 Molybdate-binding protein (NCBI ptt file) 296, 380
BC0457 BC0457 Tetratricopeptide repeat family protein (NCBI ptt file) 90, 296
BC0493 BC0493 1,2-diacylglycerol 3-glucosyltransferase (NCBI ptt file) 81, 273
BC0738 BC0738 hypothetical protein (NCBI ptt file) 296, 380
BC1045 BC1045 hypothetical protein (NCBI ptt file) 166, 296
BC1169 BC1169 hypothetical protein (NCBI ptt file) 226, 296
BC1512 BC1512 Heptaprenyl diphosphate synthase component I (NCBI ptt file) 260, 273
BC1598 BC1598 LACX protein (NCBI ptt file) 90, 296
BC1603 BC1603 Cold shock protein (NCBI ptt file) 296, 350
BC1710 BC1710 Transcriptional regulator, MerR family (NCBI ptt file) 273, 507
BC1719 BC1719 Transcriptional regulator, MecI family (NCBI ptt file) 15, 273
BC1818 BC1818 Transcriptional regulator, TetR family (NCBI ptt file) 6, 273
BC1826 BC1826 CcdC protein (NCBI ptt file) 118, 273
BC1834 BC1834 Arsenical-resistance protein ACR3 (NCBI ptt file) 126, 296
BC2044 BC2044 Magnesium and cobalt efflux protein corC (NCBI ptt file) 110, 273
BC2201 BC2201 Outer membrane protein romA (NCBI ptt file) 117, 273
BC2231 BC2231 hypothetical Cytosolic Protein (NCBI ptt file) 126, 296
BC2841 BC2841 hypothetical protein (NCBI ptt file) 296, 337
BC2842 BC2842 hypothetical protein (NCBI ptt file) 296, 337
BC2843 BC2843 hypothetical protein (NCBI ptt file) 296, 475
BC3682 BC3682 Transketolase (NCBI ptt file) 296, 474
BC3931 BC3931 hypothetical protein (NCBI ptt file) 166, 296
BC3953 BC3953 hypothetical protein (NCBI ptt file) 126, 296
BC4089 BC4089 DNA integration/recombination/invertion protein (NCBI ptt file) 273, 447
BC4090 BC4090 hypothetical protein (NCBI ptt file) 273, 447
BC4297 BC4297 GTP-binding protein (NCBI ptt file) 273, 371
BC4321 BC4321 DNA polymerase III, delta subunit (NCBI ptt file) 41, 273
BC4649 BC4649 Septation ring formation regulator (NCBI ptt file) 226, 296
BC4758 BC4758 Molybdenum cofactor biosynthesis protein B (NCBI ptt file) 119, 273
BC4760 BC4760 Acetyltransferase (NCBI ptt file) 187, 296
BC4936 BC4936 Diaminopimelate epimerase (NCBI ptt file) 119, 273
BC4940 BC4940 ABC transporter ATP-binding protein (NCBI ptt file) 117, 273
BC5165 BC5165 Integral membrane protein (NCBI ptt file) 74, 273
BC5176 BC5176 Transcriptional regulator, MerR family (NCBI ptt file) 28, 296
BC5177 BC5177 Trp repressor binding protein (NCBI ptt file) 28, 296
BC5183 BC5183 hypothetical Membrane Spanning Protein (NCBI ptt file) 296, 298
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0043
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend