Organism : Bacillus cereus ATCC14579 | Module List:
Module 257 Profile

GeneModule member RegulatorRegulator MotifMotif
Cytoscape Web
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 257

There are 13 regulatory influences for Module 257

Regulator Table (13)
Regulator Name Type
BC1363 tf
BC2401 tf
BC0607 tf
BC0114 tf
BC1841 tf
BC3826 tf
BC0854 tf
BC5143 tf
BC1987 tf
BC2514 tf
BC4010 tf
BC1427 tf
BC3207 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
4430 5.50e+00 AAgGAGg
Loader icon
4431 1.10e+04 gAtgAAGAGGaGC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 257 is enriched for following functions.

TIGRFam Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
DNA metabolism tigr mainrole 2.93e-04 5.52e-04 3/25
DNA replication, recombination, and repair tigr sub1role 1.95e-04 3.83e-04 3/25

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Replication, recombination and repair cog subcategory 3.81e-03 6.94e-03 3/25
Amino acid transport and metabolism cog subcategory 2.47e-02 3.99e-02 4/25
Function unknown cog subcategory 2.92e-02 4.65e-02 4/25
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 257

There are 25 genes in Module 257

Gene Member Table (25)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
BC0014 BC0014 CDS None chromosome 16917 18233 + D-alanyl-D-alanine carboxypeptidase (NCBI ptt file) False
BC0564 BC0564 CDS None chromosome 547464 547970 + hypothetical lipoprotein (NCBI ptt file) False
BC0579 BC0579 CDS None chromosome 564249 565595 + Malate-sodium symport (NCBI ptt file) False
BC0674 BC0674 CDS None chromosome 673152 674303 - Permease (NCBI ptt file) False
BC0676 BC0676 CDS None chromosome 674806 675093 - hypothetical protein (NCBI ptt file) False
BC0803 BC0803 CDS None chromosome 785620 787275 - Sodium-dependent phosphate transporter (NCBI ptt file) False
BC0826 BC0826 CDS None chromosome 808425 809237 - hypothetical DNA-binding protein (NCBI ptt file) False
BC0879 BC0879 CDS None chromosome 856814 857959 + hypothetical Membrane Associated Protein (NCBI ptt file) False
BC0941 BC0941 CDS None chromosome 924579 925700 + Type II restriction-modification system methylation subunit (NCBI ptt file) False
BC1319 BC1319 CDS None chromosome 1295234 1296421 + Oxidoreductase (NCBI ptt file) False
BC1427 BC1427 CDS None chromosome 1387647 1388402 + CbiX protein (NCBI ptt file) True
BC1617 BC1617 CDS None chromosome 1575329 1575913 + hypothetical Cytosolic Protein (NCBI ptt file) False
BC2374 BC2374 CDS None chromosome 2319320 2319823 - hypothetical Membrane Spanning Protein (NCBI ptt file) False
BC2554 BC2554 CDS None chromosome 2528511 2528996 + hypothetical protein (NCBI ptt file) False
BC2894 BC2894 CDS None chromosome 2852851 2854053 + Macrolide-efflux protein (NCBI ptt file) False
BC3428 BC3428 CDS None chromosome 3391906 3392529 - Lysine exporter protein (NCBI ptt file) False
BC3775 BC3775 CDS None chromosome 3747116 3748039 - Microsomal dipeptidase (NCBI ptt file) False
BC4088 BC4088 CDS None chromosome 4056994 4057740 - IG hypothetical 17224 (NCBI ptt file) False
BC4275 BC4275 CDS None chromosome 4221320 4221685 + hypothetical protein (NCBI ptt file) False
BC4295 BC4295 CDS None chromosome 4239077 4239823 - DNA repair protein recO (NCBI ptt file) False
BC4511 BC4511 CDS None chromosome 4456175 4457002 + Acid phosphatase (NCBI ptt file) False
BC4688 BC4688 CDS None chromosome 4628153 4628497 - hypothetical protein (NCBI ptt file) False
BC4761 BC4761 CDS None chromosome 4694320 4695519 - S-adenosylmethionine synthetase (NCBI ptt file) False
BC5193 BC5193 CDS None chromosome 5091768 5093123 - COMF operon protein 1 (NCBI ptt file) False
BC5370 BC5370 CDS None chromosome 5287228 5288100 - Agmatinase (NCBI ptt file) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Comments for Module 257

Please add your comments for this module by using the form below. Your comments will be publicly available.

comments powered by Disqus
Social Help

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.