Organism : Geobacter sulfurreducens | Module List :
GSU3064 ftsA

cell division protein FtsA (NCBI)

CircVis
Functional Annotations (6)
Function System
Actin-like ATPase involved in cell division cog/ cog
cell morphogenesis go/ biological_process
ATP binding go/ molecular_function
cell cycle go/ biological_process
D-alanine-D-alanine ligase activity go/ molecular_function
ftsA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU3064
(Mouseover regulator name to see its description)

GSU3064 is regulated by 16 influences and regulates 0 modules.
Regulators for GSU3064 ftsA (16)
Regulator Module Operator
GSU0147 249 tf
GSU1013 249 tf
GSU1495 249 tf
GSU1831 249 tf
GSU2033 249 tf
GSU2362 249 tf
GSU2506 249 tf
GSU2753 249 tf
GSU2926 249 tf
GSU2941 249 tf
GSU3108 249 tf
GSU0013 265 tf
GSU0300 265 tf
GSU0736 265 tf
GSU1013 265 tf
GSU2868 265 tf

Warning: GSU3064 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2658 1.30e-02 tagTgctAAtcAagtaa.tTTtaa
Loader icon
2659 1.60e+01 aagGGagGgGgaGATtCcTGgtGG
Loader icon
2690 9.60e-05 AAAaAtagtAcCtTaTAtTtTt.T
Loader icon
2691 1.50e-02 GTCAATaAc.TcaaAgGacg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU3064

GSU3064 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Actin-like ATPase involved in cell division cog/ cog
cell morphogenesis go/ biological_process
ATP binding go/ molecular_function
cell cycle go/ biological_process
D-alanine-D-alanine ligase activity go/ molecular_function
ftsA tigr/ tigrfam
Module neighborhood information for GSU3064

GSU3064 has total of 46 gene neighbors in modules 249, 265
Gene neighbors (46)
Gene Common Name Description Module membership
GSU0009 GSU0009 sensory box histidine kinase (VIMSS) 217, 249
GSU0273 GSU0273 radical SAM domain protein (NCBI) 249, 278
GSU0310 GSU0310 conserved hypothetical protein (VIMSS) 217, 249
GSU0487 GSU0487 cation efflux family protein (VIMSS) 144, 265
GSU0634 GSU0634 glycosyl transferase, group 1 family protein (VIMSS) 204, 249
GSU0734 GSU0734 NAD-dependent dehydrogenase subunit (VIMSS) 238, 265
GSU0736 GSU0736 pemK protein, putative (VIMSS) 238, 265
GSU0737 GSU0737 hypothetical protein (NCBI) 265, 276
GSU0739 GSU0739 NAD-dependent dehydrogenase subunit (VIMSS) 238, 265
GSU0740 GSU0740 NAD-dependent dehydrogenase subunit (VIMSS) 238, 265
GSU0741 GSU0741 NAD-dependent dehydrogenase subunit (VIMSS) 238, 265
GSU0742 GSU0742 NAD-dependent dehydrogenase subunit (VIMSS) 222, 265
GSU0743 GSU0743 NAD-dependent dehydrogenase subunit (VIMSS) 158, 265
GSU0744 GSU0744 hypothetical protein (VIMSS) 238, 265
GSU1002 GSU1002 isochorismatase family protein (NCBI) 89, 265
GSU1003 ntrC nitrogen regulation protein NR(I) (NCBI) 89, 265
GSU1004 GSU1004 sensory box histidine kinase (VIMSS) 89, 265
GSU1006 GSU1006 hypothetical protein (VIMSS) 265, 335
GSU1136 GSU1136 5-formyltetrahydrofolate cyclo-ligase family protein (VIMSS) 249, 265
GSU1276 carB carbamoyl-phosphate synthase, large subunit (NCBI) 132, 249
GSU1390 GSU1390 DNA-binding protein (NCBI) 88, 249
GSU1391 GSU1391 Fic family protein (NCBI) 249, 278
GSU1392 GSU1392 CRISPR-associated protein Cas1 (NCBI) 249, 336
GSU1393 GSU1393 CRISPR-associated protein, CT1978 family (NCBI) 163, 249
GSU1679 GSU1679 hypothetical protein (VIMSS) 51, 249
GSU1710 GSU1710 None 126, 249
GSU1741 GSU1741 phosphatase, Ppx/GppA family (VIMSS) 68, 265
GSU1745 GSU1745 OmpA domain protein (VIMSS) 236, 265
GSU1746 ihfB integration host factor, beta subunit (NCBI) 11, 265
GSU1753 GSU1753 lysyl-tRNA synthetase-related protein (NCBI) 163, 249
GSU1758 purM phosphoribosylformylglycinamidine cyclo-ligase (VIMSS) 30, 249
GSU1864 ksgA dimethyladenosine transferase (NCBI) 199, 249
GSU1865 gcp metalloendopeptidase, putative, glycoprotease family (NCBI) 199, 249
GSU1866 GSU1866 phoH family protein (VIMSS) 249, 333
GSU1868 GSU1868 aminotransferase, class V (VIMSS) 249, 308
GSU1869 GSU1869 lipoprotein, putative (VIMSS) 199, 249
GSU1881 ptsI phosphoenolpyruvate-protein phosphotransferase (NCBI) 245, 265
GSU2093 GSU2093 ABC transporter, ATP-binding protein (VIMSS) 217, 249
GSU2110 GSU2110 hypothetical protein (VIMSS) 102, 249
GSU2111 GSU2111 hypothetical protein (VIMSS) 102, 249
GSU2264 lpxA acyl-(acyl-carrier-protein)--UDP-N- acetylglucosamine O-acyltransferase (NCBI) 249, 277
GSU2889 GSU2889 hypothetical protein (VIMSS) 68, 249
GSU2999 cobH precorrin-8X methylmutase (VIMSS) 265, 285
GSU3000 GSU3000 cbiX protein (NCBI) 183, 265
GSU3064 ftsA cell division protein FtsA (NCBI) 249, 265
GSU3346 GSU3346 potassium uptake protein, Kup system (VIMSS) 249, 295
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU3064
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend