Organism : Escherichia coli K12 | Module List :
NP_417370.1 xerD

None

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for NP_417370.1
(Mouseover regulator name to see its description)

Warning: No Regulators were found for NP_417370.1!

Warning: NP_417370.1 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
8954 7.80e-05 GTGCCAtaatgCGcTAcTGTgcC
Loader icon
8955 3.60e-02 AGCgGct..cgcAAa.GGTT
Loader icon
9066 2.40e-05 tcTGcTatacTTGCgcCcCttaT
Loader icon
9067 1.80e+01 GAatatgaTaaactagtCGcAaaa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for NP_417370.1

Warning: No Functional annotations were found!

Module neighborhood information for NP_417370.1

NP_417370.1 has total of 49 gene neighbors in modules 251, 307
Gene neighbors (49)
Gene Common Name Description Module membership
NP_416879.4 lpxP None 134, 251
NP_417065.1 rseC None 32, 251
NP_417223.1 pcm None 307, 389
NP_417224.1 surE None 307, 389
NP_417225.1 truD None 307, 389
NP_417262.1 chpA None 78, 251
NP_417263.1 chpR None 78, 251
NP_417297.1 recB None 168, 251
NP_417305.1 lgt None 251, 358
NP_417368.1 recJ None 251, 307
NP_417369.1 dsbC None 251, 307
NP_417370.1 xerD None 251, 307
NP_417371.1 fldB None 307, 371
NP_417462.1 gsp None 251, 407
NP_417489.1 sufI None 37, 307
NP_417502.1 parE None 76, 251
NP_417503.1 yqiA None 143, 251
NP_417504.1 cpdA None 251, 372
NP_417505.1 yqiB None 169, 251
NP_417506.1 nudF None 251, 294
NP_417507.2 tolC None 224, 251
NP_417632.1 nlpI None 251, 329
NP_417846.1 dam None 21, 251
NP_418064.1 cysE None 253, 307
NP_418065.1 gpsA None 1, 307
NP_418085.1 rfaB None 187, 251
NP_418088.1 rfaG None 187, 251
NP_418089.1 rfaQ None 187, 251
NP_418107.1 spoT None 168, 307
NP_418199.1 asnC None 62, 251
NP_418248.1 hemD None 68, 307
NP_418254.2 dapF None 219, 307
NP_418255.1 yigA None 219, 307
NP_418256.1 xerC None 307, 389
NP_418285.1 ubiD None 219, 307
NP_418286.1 fre None 37, 307
NP_418402.2 murI None 251, 402
NP_418404.1 birA None 22, 307
NP_418465.4 plsB None 294, 307
NP_418476.1 dnaB None 22, 307
NP_418549.1 dcuS None 229, 251
NP_418679.1 valS None 76, 307
NP_418680.1 holC None 51, 307
NP_418789.1 holD None 97, 307
NP_418790.1 rimI None 76, 307
NP_418791.1 yjjG None 214, 307
NP_418807.4 nadR None 92, 307
YP_026265.1 rhtB None 232, 251
YP_026267.1 yigL None 232, 251
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for NP_417370.1
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend