Organism : Bacillus subtilis | Module List:
Module 272 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 272

There are 6 regulatory influences for Module 272

Regulator Table (6)
Regulator Name Type
BSU16170 tf
BSU00800 tf
BSU16600 tf
BSU24250 tf
BSU15690 tf
BSU29740 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
5482 9.90e+00 GCtCgGCAtGCaA
Loader icon
5483 5.40e+03 CGGACG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 272 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Metabolism kegg category 1.44e-03 6.74e-03 9/21
Nucleotide Metabolism kegg subcategory 1.31e-03 6.38e-03 3/21
Purine metabolism kegg pathway 3.86e-04 2.65e-03 3/21
Metabolism of Cofactors and Vitamins kegg subcategory 2.28e-04 1.80e-03 4/21
Genetic Information Processing kegg category 1.79e-02 3.59e-02 3/21
Global kegg category 7.68e-03 1.92e-02 7/21
Metabolism kegg subcategory 7.68e-03 1.92e-02 7/21
Metabolic pathways kegg pathway 5.11e-03 1.46e-02 7/21
Biosynthesis of secondary metabolites kegg pathway 1.03e-02 2.39e-02 4/21

TIGRFam Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Protein synthesis tigr mainrole 2.20e-05 5.50e-05 5/21
tRNA and rRNA base modification tigr sub1role 0.00e+00 1.00e-06 4/21
Protein fate tigr mainrole 2.58e-04 4.80e-04 3/21
Biosynthesis of cofactors, prosthetic groups, and carriers tigr mainrole 9.53e-04 1.56e-03 3/21

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Information storage and processing cog category 2.60e-05 8.20e-05 10/21
Translation, ribosomal structure and biogenesis cog subcategory 1.15e-04 2.61e-04 5/21
Replication, recombination and repair cog subcategory 3.92e-03 6.60e-03 3/21
Coenzyme transport and metabolism cog subcategory 3.41e-03 5.77e-03 3/21
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 272

There are 21 genes in Module 272

Gene Member Table (21)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
BSU15670 ylzA CDS None chromosome 1640972 1641241 + hypothetical protein (RefSeq) False
BSU15680 gmk CDS None chromosome 1641249 1641863 + guanylate kinase (RefSeq) False
BSU15690 rpoZ CDS None chromosome 1641867 1642070 + DNA-directed RNA polymerase subunit omega (RefSeq) True
BSU15700 coaBC CDS None chromosome 1642151 1643371 + Coenzyme A biosynthesis bifunctional protein CoaBC; phosphopantothenoylcysteine synthetase/decarboxylase (RefSeq) False
BSU15710 priA CDS None chromosome 1643368 1645785 + primosome assembly protein PriA (RefSeq) False
BSU15720 def CDS None chromosome 1645812 1646294 + peptide deformylase (RefSeq) False
BSU15730 fmt CDS None chromosome 1646299 1647252 + methionyl-tRNA formyltransferase (RefSeq) False
BSU15740 rsmB CDS None chromosome 1647239 1648582 + RNA-binding Sun protein; 16S rRNA m5C967 methyltransferase, S-adenosyl-L-methionine-dependent (RefSeq) False
BSU15750 yloN CDS None chromosome 1648586 1649677 + ribosomal RNA large subunit methyltransferase N (RefSeq) False
BSU16150 clpQ CDS None chromosome 1687414 1687959 + ATP-dependent protease peptidase subunit (RefSeq) False
BSU16160 hslU CDS None chromosome 1687976 1689379 + ATP-dependent protease ATP-binding subunit HslU (RefSeq) False
BSU16760 dapG CDS None chromosome 1746415 1747629 + aspartate kinase I (RefSeq) False
BSU16770 dapA CDS None chromosome 1747660 1748532 + dihydrodipicolinate synthase (RefSeq) False
BSU19380 yojO CDS None chromosome 2111039 2113024 - putative activator of nitric oxide reductase (RefSeq) False
BSU23610 nudF CDS None chromosome 2457698 2458255 - ADP-ribose pyrophosphatase (RefSeq) False
BSU24240 recN CDS None chromosome 2519788 2521518 - factor for double strand breaks DNA repair and genetic recombination (RefSeq) False
BSU24250 ahrC CDS None chromosome 2521555 2522004 - arginine repressor (RefSeq) True
BSU27710 tgt CDS None chromosome 2831953 2833098 - queuine tRNA-ribosyltransferase (RefSeq) False
BSU27720 queA CDS None chromosome 2833125 2834153 - S-adenosylmethionine:tRNA ribosyltransferase-isomerase (RefSeq) False
BSU30800 menB CDS None chromosome 3147949 3148764 - naphthoate synthase (RefSeq) False
BSU30830 menF CDS None chromosome 3151350 3152765 - menaquinone-specific isochorismate synthase (RefSeq) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.