Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network.

Publication Type:

Journal Article

Source:

Genome Biol, Volume 15, Issue 11, p.502 (2014)

Keywords:

Cloning, Molecular, Gene Expression Regulation, Bacterial, Gene Regulatory Networks, Humans, Isoniazid, Mycobacterium tuberculosis, Promoter Regions, Genetic, Regulon, Transcription Factors, Transcription, Genetic, Transcriptome, Tuberculosis

Abstract:

<p><b>BACKGROUND: </b>Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host. To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each transcription factor from an inducible promoter.</p><p><b>RESULTS: </b>We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors, providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains, we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict the growth rates of individual TFOE strains with high fidelity.</p><p><b>CONCLUSION: </b>This work has led to a systems-level framework describing the transcriptome of a devastating bacterial pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis, and demonstrated the utility of this resource. These results will stimulate additional systems-level and hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease.</p>

Supplementary Files: 

TFOE Expression Data Records

Title Gene BioProject GEO Series Platform Accession Sample Method Sample Type References Release Date Repository
TFOE_0700_2711
Iron-dependent repressor IdeR/DtxR
PRJNA254351 GSE59086 GPL14824 GSM1426856 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_1580_2711
Iron-dependent repressor IdeR/DtxR
PRJNA254351 GSE59086 GPL14824 GSM1426857 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_4740_2711
Iron-dependent repressor IdeR/DtxR
PRJNA254351 GSE59086 GPL14824 GSM1426858 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_1958_2720_B
SOS-response repressor and protease LexA (EC 3.4.21.88)
PRJNA254351 GSE59086 GPL14824 GSM1426859 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_2792_2720
SOS-response repressor and protease LexA (EC 3.4.21.88)
PRJNA254351 GSE59086 GPL14824 GSM1426860 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_4405_2720_C
SOS-response repressor and protease LexA (EC 3.4.21.88)
PRJNA254351 GSE59086 GPL14824 GSM1426861 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_8166_2720_A
SOS-response repressor and protease LexA (EC 3.4.21.88)
PRJNA254351 GSE59086 GPL14824 GSM1426862 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_8203_2720
SOS-response repressor and protease LexA (EC 3.4.21.88)
PRJNA254351 GSE59086 GPL14824 GSM1426863 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_1356_2745c_B
Transcriptional regulator, XRE family
PRJNA254351 GSE59086 GPL14824 GSM1426864 Tiling Array RNA 25232098 4-Jul-14 GEO
TFOE_3093_2710
RNA polymerase sigma factor SigB
PRJNA254351 GSE59086 GPL14824 GSM1426853 Tiling Array RNA 25232098 4-Jul-14 GEO