cmonkey.network
index
/home/weiju/Projects/ISB/cmonkey-python/cmonkey/network.py

network.py - cMonkey network module
 
This file is part of cMonkey Python. Please see README and LICENSE for
more information and licensing details.

 
Modules
       
cPickle
cmonkey.datamatrix
logging
numpy
os
cmonkey.scoring
cmonkey.util

 
Classes
       
Network
cmonkey.scoring.ScoringFunctionBase
ScoringFunction

 
class Network
    class to represent a network graph.
The graph is considered undirected
For efficiency reasons, edges is a list of [source, target, weight]
 
  Methods defined here:
__init__(self, name, edges, weight, dummy)
creates a network from a list of edges
__repr__(self)
edges_with_node(self, node)
returns the edges where node is a node of
normalize_scores_to(self, score)
normalizes all edge scores so that they sum up to
the specified score
num_edges(self)
returns the number of edges in this graph
total_score(self)
returns the sum of edge scores
validate(self, synonyms, genes)

Class methods defined here:
create(cls, name, edges, weight, organism=None, ratios=None, check_size=True) from __builtin__.classobj
standard Factory method

 
class ScoringFunction(cmonkey.scoring.ScoringFunctionBase)
    Network scoring function. Note that even though there are several
networks, scoring can't be generalized with the default ScoringCombiner,
since the scores are computed through weighted addition rather than
quantile normalization
 
  Methods defined here:
__init__(self, organism, membership, ratios, config_params)
Create scoring function instance
compute(self, iteration_result, ref_matrix=None)
overridden compute for storing additional information
compute_force(self, iteration_result, ref_matrix=None)
overridden compute for storing additional information
do_compute(self, iteration_result, ref_matrix=None)
compute method, iteration is the 0-based iteration number
initialize(self, args)
process additional parameters
networks(self)
networks are cached
run_logs(self)

Methods inherited from cmonkey.scoring.ScoringFunctionBase:
check_requirements(self)
Give the scoring module an opportunity to check whether the
requirements to run are all met
gene_names(self)
returns the gene names
last_cached(self)
num_clusters(self)
returns the number of clusters
pickle_path(self)
returns the function-specific pickle-path
rows_for_cluster(self, cluster)
returns the rows for the specified cluster
run_in_iteration(self, i)
scaling(self, iteration)
returns the quantile normalization scaling for the specified iteration
set_score_means(self, iteration_result, matrix)

 
Functions
       
compute_network_scores(cluster)
Generic method to compute network scores
retrieve_networks(organism)
retrieves the networks provided by the organism object and
possibly other sources, doing some normalization if necessary
Note: wanted to make it private, but the scoring function
can not see it after doing so

 
Data
        ALL_GENES = None
COMPUTE_NETWORK = None
NETWORK_SCORE_MEMBERSHIP = None