Organism : Bacillus cereus ATCC14579 | Module List :
BC3426

RNA polymerase sigma-I factor (NCBI ptt file)

CircVis
Functional Annotations (7)
Function System
DNA-directed RNA polymerase specialized sigma subunit cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
transcription initiation, DNA-dependent go/ biological_process
regulation of transcription, DNA-dependent go/ biological_process
sigma factor activity go/ molecular_function
RNA polymerase kegg/ kegg pathway
spore_sigI tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC3426
(Mouseover regulator name to see its description)

BC3426 is regulated by 37 influences and regulates 4 modules.
Regulators for BC3426 (37)
Regulator Module Operator
BC0123 146 tf
BC0882 146 tf
BC0950 146 tf
BC0953 146 tf
BC0993 146 tf
BC1915 146 tf
BC2298 146 tf
BC2442 146 tf
BC2558 146 tf
BC2738 146 tf
BC3069 146 tf
BC3244 146 tf
BC3400 146 tf
BC3493 146 tf
BC3497 146 tf
BC3589 146 tf
BC4072 146 tf
BC4474 146 tf
BC0123 163 tf
BC0473 163 tf
BC0598 163 tf
BC0882 163 tf
BC0953 163 tf
BC0993 163 tf
BC1037 163 tf
BC2217 163 tf
BC2386 163 tf
BC2914 163 tf
BC3069 163 tf
BC3400 163 tf
BC3493 163 tf
BC3497 163 tf
BC3589 163 tf
BC3653 163 tf
BC3693 163 tf
BC4073 163 tf
BC5361 163 tf

Warning: BC3426 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4208 4.00e+03 gGGAGAg
Loader icon
4209 2.70e+04 CCCCcTTtTgT
Loader icon
4242 2.20e-07 AagggGAg
Loader icon
4243 7.20e+02 gagagtacttctctTcctTttTTa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC3426

BC3426 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
DNA-directed RNA polymerase specialized sigma subunit cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
transcription initiation, DNA-dependent go/ biological_process
regulation of transcription, DNA-dependent go/ biological_process
sigma factor activity go/ molecular_function
RNA polymerase kegg/ kegg pathway
spore_sigI tigr/ tigrfam
Module neighborhood information for BC3426

BC3426 has total of 55 gene neighbors in modules 146, 163
Gene neighbors (55)
Gene Common Name Description Module membership
BC0298 BC0298 Two-component response regulator (NCBI ptt file) 163, 281
BC0299 BC0299 Two component system histidine kinase (NCBI ptt file) 163, 308
BC0349 BC0349 hypothetical protein (NCBI ptt file) 20, 163
BC0455 BC0455 hypothetical Membrane Spanning Protein (NCBI ptt file) 163, 293
BC0456 BC0456 Signal peptidase I (NCBI ptt file) 146, 163
BC0890 BC0890 Long-chain-fatty-acid--CoA ligase (NCBI ptt file) 146, 279
BC0950 BC0950 Transcriptional regulator, copG family (NCBI ptt file) 85, 146
BC1016 BC1016 hypothetical protein (NCBI ptt file) 158, 163
BC1040 BC1040 hypothetical protein (NCBI ptt file) 9, 146
BC1073 BC1073 hypothetical protein (NCBI ptt file) 85, 163
BC1121 BC1121 hypothetical protein (NCBI ptt file) 163, 327
BC1127 BC1127 Malate synthase (NCBI ptt file) 163, 218
BC1229 BC1229 hypothetical protein (NCBI ptt file) 26, 146
BC1601 BC1601 hypothetical protein (NCBI ptt file) 7, 146
BC1607 BC1607 Fatty acid hydroxylase FAH1P (NCBI ptt file) 163, 395
BC1800 BC1800 Two-component response regulator vanR (NCBI ptt file) 97, 163
BC1914 BC1914 Phage protein (NCBI ptt file) 63, 146
BC2040 BC2040 putative spore coat protein (NCBI ptt file) 146, 225
BC2054 BC2054 Glutamyl-tRNA(Gln) amidotransferase subunit A (NCBI ptt file) 146, 427
BC2240 BC2240 Magnesium and cobalt efflux protein corC (NCBI ptt file) 163, 258
BC2298 BC2298 Transcriptional repressor (NCBI ptt file) 146, 225
BC2315 BC2315 DinB protein (NCBI ptt file) 63, 163
BC2326 BC2326 Oligopeptide transport system permease protein oppB (NCBI ptt file) 163, 209
BC2332 BC2332 hypothetical protein (NCBI ptt file) 163, 299
BC2348 BC2348 Acetyltransferase (NCBI ptt file) 163, 453
BC2412 BC2412 ABC transporter permease protein (NCBI ptt file) 163, 253
BC2482 BC2482 hypothetical Cytosolic Protein (NCBI ptt file) 163, 299
BC2494 BC2494 Aminoglycoside N6'-acetyltransferase (NCBI ptt file) 146, 163
BC2709 BC2709 Ribosomal-protein-alanine acetyltransferase (NCBI ptt file) 163, 279
BC2749 BC2749 Acetyltransferase (NCBI ptt file) 20, 146
BC2776 BC2776 Dihydrolipoamide dehydrogenase (NCBI ptt file) 146, 427
BC2829 BC2829 putative Metal-dependent phosphohydrolase (NCBI ptt file) 146, 299
BC2981 BC2981 hypothetical protein (NCBI ptt file) 146, 334
BC3020 BC3020 hypothetical protein (NCBI ptt file) 163, 258
BC3188 BC3188 D-alanyl-D-alanine carboxypeptidase (NCBI ptt file) 163, 209
BC3316 BC3316 Regulatory protein (NCBI ptt file) 72, 146
BC3339 BC3339 Phosphohydrolase (MutT/nudix family protein) (NCBI ptt file) 52, 146
BC3340 BC3340 tryptophanyl-tRNA synthetase (RefSeq) 163, 412
BC3426 BC3426 RNA polymerase sigma-I factor (NCBI ptt file) 146, 163
BC3431 BC3431 Lysine exporter protein (NCBI ptt file) 98, 163
BC3497 BC3497 Transcriptional regulator, ArsR family (NCBI ptt file) 63, 146
BC3504 BC3504 (S)-2-hydroxy-acid oxidase chain D (NCBI ptt file) 154, 163
BC3518 BC3518 Response regulator aspartate phosphatase (NCBI ptt file) 20, 163
BC3555 BC3555 Aldehyde dehydrogenase (NCBI ptt file) 146, 294
BC3589 BC3589 RNA polymerase ECF-type sigma factor (NCBI ptt file) 25, 163
BC3676 BC3676 hypothetical protein (NCBI ptt file) 163, 308
BC3724 BC3724 GABA-specific permease (NCBI ptt file) 146, 163
BC3984 BC3984 hypothetical protein (NCBI ptt file) 163, 316
BC4169 BC4169 hypothetical protein (NCBI ptt file) 146, 163
BC4357 BC4357 (R)-specific enoyl-CoA hydratase (NCBI ptt file) 163, 525
BC4432 BC4432 Two-component sensor kinase yvcQ (NCBI ptt file) 163, 385
BC4539 BC4539 Two-component response regulator ycbL (NCBI ptt file) 163, 316
BC4712 BC4712 hypothetical Cytosolic Protein (NCBI ptt file) 146, 227
BC5049 BC5049 hypothetical Membrane Spanning Protein (NCBI ptt file) 146, 209
BC5448 BC5448 UDP-glucose 4-epimerase (NCBI ptt file) 146, 263
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC3426
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend