Organism : Bacillus subtilis | Module List:
Module 243 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 243

There are 11 regulatory influences for Module 243

Regulator Table (11)
Regulator Name Type
BSU04680 tf
BSU28820 tf
BSU24250 tf
BSU04730 tf
BSU09830 tf
BSU29740 tf
BSU10830 tf
BSU25760 tf
BSU02220 tf
BSU29630 tf
BSU05170 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
5428 3.90e-04 atcCct.ctGAaaaaGcatataT
Loader icon
5429 9.60e+01 cgCgcgAggTTtgTc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 243 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Genetic Information Processing kegg category 7.89e-03 1.95e-02 4/26

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Signal transduction mechanisms cog subcategory 2.64e-03 4.54e-03 4/26
Coenzyme transport and metabolism cog subcategory 9.00e-06 3.30e-05 6/26
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 243

There are 26 genes in Module 243

Gene Member Table (26)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
BSU00380 metS CDS None chromosome 45631 47625 + methionyl-tRNA synthetase (RefSeq) False
BSU00390 yabD CDS None chromosome 47704 48471 + metal-dependent DNase (RefSeq) False
BSU00690 ftsH CDS None chromosome 76982 78895 + cell-division protein and general stress protein (class III heat-shock) (RefSeq) False
BSU00920 gltX CDS None chromosome 111044 112495 + glutamyl-tRNA synthetase (RefSeq) False
BSU04670 rsbRA CDS None chromosome 518969 519793 + component of the piezosome (stressosome); positive regulation of sigma(B) activity in response to salt and heat stress (RefSeq) False
BSU04680 rsbS CDS None chromosome 519798 520163 + antagonist of RsbT (RefSeq) True
BSU04690 rsbT CDS None chromosome 520167 520568 + switch protein/serine-threonine kinase; controls the activity of the piezosome (stressosome) (RefSeq) False
BSU04700 rsbU CDS None chromosome 520580 521587 + serine phosphatase; controls the activity of the piezosome (stressosome) (RefSeq) False
BSU09790 yheB CDS None chromosome 1052828 1053961 + hypothetical protein (RefSeq) False
BSU14260 mobA CDS None chromosome 1494812 1495411 + molybdopterin-guanine dinucleotide biosynthesis protein A (RefSeq) False
BSU14270 moeB CDS None chromosome 1495462 1496481 + thiamine/molybdopterin biosynthesis MoeB-like protein (RefSeq) False
BSU14280 moeA CDS None chromosome 1496499 1497791 + molybdene to molybdopterin ligation enzyme (RefSeq) False
BSU14290 mobB CDS None chromosome 1497752 1498273 + molybdopterin-guanine dinucleotide biosynthesis protein B (RefSeq) False
BSU14300 moaE CDS None chromosome 1498273 1498746 + molybdopterin synthase (large subunit) (RefSeq) False
BSU28200 lonA CDS None chromosome 2879531 2881855 - class III heat-shock ATP-dependent LonA protease (RefSeq) False
BSU28350 ysnB CDS None chromosome 2899086 2899601 - phosphoesterase (RefSeq) False
BSU28360 ysnA CDS None chromosome 2899611 2900207 - nucleoside-triphosphatase (RefSeq) False
BSU29460 moaB CDS None chromosome 3013553 3014065 - molybdopterin GTP-binding precursor Z biosynthesis component (RefSeq) False
BSU29550 ytcJ CDS None chromosome 3021107 3022696 - putative metal-dependent hydrolase (RefSeq) False
BSU29560 ytcI CDS None chromosome 3022716 3024311 - putative acyl-coenzyme A synthetase (RefSeq) False
BSU32360 yunC CDS None chromosome 3322326 3322631 - putative RNA binding protein (RefSeq) False
BSU37940 ywdJ CDS None chromosome 3893418 3894800 - putative purine/pyrimidine permease (RefSeq) False
BSU37950 ywdI CDS None chromosome 3894820 3895137 - hypothetical protein (RefSeq) False
BSU37960 ywdH CDS None chromosome 3895305 3896678 + putative aldehyde dehydrogenase (RefSeq) False
BSU37980 ywdF CDS None chromosome 3897394 3898200 - putative glycosyltransferase (RefSeq) False
BSU40520 yybS CDS None chromosome 4164683 4165612 - putative integral inner membrane protein (RefSeq) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.