Organism : Geobacter sulfurreducens | Module List:
Module 224 Profile

GeneModule member RegulatorRegulator MotifMotif
Cytoscape Web
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 224

There are 9 regulatory influences for Module 224

Regulator Table (9)
Regulator Name Type
GSU0164 tf
GSU1115 tf
GSU1250 tf
GSU2787 tf
GSU1095 tf
GSU2915 tf
GSU2581 tf
GSU0473 tf
GSU1522 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
2608 1.30e+03 ccATcGaCcgG
Loader icon
2609 5.20e+04 GcaaCcctTccagaaCAcCtAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 224 is enriched for following functions.

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Signal transduction mechanisms cog subcategory 1.62e-02 2.80e-02 5/25
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 224

There are 25 genes in Module 224

Gene Member Table (25)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
GSU0231 GSU0231 CDS None chromosome 239002 240777 - hypothetical protein (VIMSS) False
GSU0234 GSU0234 CDS None chromosome 241707 242519 + transporter, FNT family (VIMSS) False
GSU0372 GSU0372 CDS None chromosome 406003 407388 - sigma-54 dependent DNA-binding response regulator (VIMSS) True
GSU0799 GSU0799 CDS None chromosome 856504 857304 - amino acid ABC transporter, permease protein (NCBI) False
GSU0878 GSU0878 CDS None chromosome 935517 936602 - glycosyl transferase, group 2 family protein (NCBI) False
GSU0885 GSU0885 CDS None chromosome 945928 947022 - cobyrinic acid a,c-diamide synthase family protein (NCBI) False
GSU0948 GSU0948 CDS None chromosome 1020101 1021300 - ABC transporter, permease protein, putative (VIMSS) False
GSU1037 GSU1037 CDS None chromosome 1121523 1123922 + sensory box/response regulator (VIMSS) False
GSU1188 GSU1188 CDS None chromosome 1294073 1294618 + rhomboid family protein (VIMSS) False
GSU1547 GSU1547 CDS None chromosome 1699486 1700907 + TPR domain protein (NCBI) False
GSU1671 GSU1671 CDS None chromosome 1831449 1832417 - response regulator/GGDEF domain protein (NCBI) False
GSU1714 GSU1714 CDS None chromosome 1878701 1879006 - BRO family protein, truncation (VIMSS) False
GSU2162 GSU2162 CDS None chromosome 2376230 2376793 + hypothetical protein (VIMSS) False
GSU2359 GSU2359 CDS None chromosome 2579747 2582131 + hypothetical protein (VIMSS) False
GSU2368 folC CDS None chromosome 2595766 2596911 - folC bifunctional protein (NCBI) False
GSU2533 GSU2533 CDS None chromosome 2795087 2796298 - hypothetical protein (VIMSS) False
GSU2535 GSU2535 CDS None chromosome 2797751 2798194 - response regulator (VIMSS) False
GSU2705 moaB CDS None chromosome 2983858 2984349 + molybdenum cofactor biosynthesis protein B (NCBI) False
GSU2719 hoxY CDS None chromosome 2996388 2996975 - NAD-reducing hydrogenase, delta subunit (NCBI) False
GSU2787 GSU2787 CDS None chromosome 3066335 3067252 + transcriptional regulator, LysR family (VIMSS) True
GSU2942 GSU2942 CDS None chromosome 3238978 3240612 + methyl-accepting chemotaxis protein (VIMSS) False
GSU2974 GSU2974 CDS None chromosome 3265450 3267267 - methylenetetrahydrofolate reductase family protein (VIMSS) False
GSU3121 GSU3121 CDS None chromosome 3423035 3423499 + EF hand domain protein (VIMSS) False
GSU3228 GSU3228 CDS None chromosome 3540862 3543837 + cytochrome c family protein (VIMSS) False
GSU3316 GSU3316 CDS None chromosome 3641415 3642134 + cytochrome c biogenesis protein, CcmF/CcyK/CcsA family (VIMSS) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Comments for Module 224

Please add your comments for this module by using the form below. Your comments will be publicly available.

comments powered by Disqus
Social Help

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.