Organism : Pseudomonas aeruginosa | Module List :
PA3921

probable transcriptional regulator (NCBI)

CircVis
Functional Annotations (7)
Function System
ATP-dependent transcriptional regulator cog/ cog
nucleotide binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
nucleoside-triphosphatase activity go/ molecular_function
sequence-specific DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA3921
(Mouseover regulator name to see its description)

PA3921 is regulated by 25 influences and regulates 61 modules.
Regulators for PA3921 (25)
Regulator Module Operator
PA0179 252 tf
PA0784 252 tf
PA1128 252 tf
PA1759 252 tf
PA1760 252 tf
PA1978 252 tf
PA2047 252 tf
PA2121 252 tf
PA2123 252 tf
PA3622 252 tf
PA3921 252 tf
PA4703 252 tf
PA4745 252 tf
PA5059 252 tf
PA5380 252 tf
PA5506 252 tf
PA5511 252 tf
PA0179 482 tf
PA1351 482 tf
PA2123 482 tf
PA3596 482 tf
PA3921 482 tf
PA4270 482 tf
PA4703 482 tf
PA5059 482 tf
Regulated by PA3921 (61)
Module Residual Genes
7 0.53 25
35 0.51 19
45 0.44 18
54 0.40 15
64 0.42 12
69 0.41 13
73 0.39 13
84 0.50 22
87 0.55 26
104 0.52 27
109 0.51 22
127 0.56 28
128 0.41 11
135 0.49 21
142 0.49 19
157 0.52 30
163 0.56 25
183 0.38 14
200 0.44 16
215 0.53 19
227 0.32 10
230 0.43 16
233 0.42 13
234 0.56 27
247 0.49 26
252 0.47 13
255 0.51 18
264 0.51 15
265 0.49 21
273 0.49 17
281 0.51 14
294 0.50 21
299 0.50 26
300 0.44 18
312 0.48 15
314 0.44 14
323 0.52 20
335 0.54 33
336 0.50 19
338 0.56 34
345 0.46 22
349 0.45 17
356 0.31 10
361 0.53 23
363 0.48 19
367 0.44 14
372 0.52 24
377 0.48 29
378 0.51 18
392 0.40 14
402 0.51 20
413 0.37 9
415 0.38 12
422 0.52 21
441 0.51 18
470 0.48 28
482 0.44 16
501 0.51 17
502 0.36 15
515 0.44 18
548 0.34 10
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3332 7.70e-04 ATaaaTaaAaagAggaatatgC
Loader icon
3333 5.40e-02 ATgcc.GTcTtaTcttggttaT
Loader icon
3780 2.50e-01 GAtcaacAAgGAaAacgcag
Loader icon
3781 2.40e+00 a.AaacagccgTcgCcTGt.gaT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA3921

PA3921 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
ATP-dependent transcriptional regulator cog/ cog
nucleotide binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
nucleoside-triphosphatase activity go/ molecular_function
sequence-specific DNA binding go/ molecular_function
Module neighborhood information for PA3921

PA3921 has total of 28 gene neighbors in modules 252, 482
Gene neighbors (28)
Gene Common Name Description Module membership
PA0743 PA0743 probable 3-hydroxyisobutyrate dehydrogenase (NCBI) 252, 503
PA0798 pmtA phospholipid methyltransferase (NCBI) 382, 482
PA1166 PA1166 hypothetical protein (NCBI) 349, 482
PA1353 PA1353 hypothetical protein (NCBI) 349, 482
PA1354 PA1354 hypothetical protein (NCBI) 349, 482
PA1355 PA1355 hypothetical protein (NCBI) 349, 482
PA1356 PA1356 hypothetical protein (NCBI) 349, 482
PA1759 PA1759 probable transcriptional regulator (NCBI) 239, 252
PA1760 PA1760 probable transcriptional regulator (NCBI) 239, 252
PA1761 PA1761 hypothetical protein (NCBI) 252, 515
PA1951 PA1951 hypothetical protein (NCBI) 349, 482
PA2121 PA2121 probable transcriptional regulator (NCBI) 252, 443
PA2122 PA2122 hypothetical protein (NCBI) 252, 294
PA3089 PA3089 hypothetical protein (NCBI) 252, 349
PA3250 PA3250 hypothetical protein (NCBI) 84, 252
PA3251 PA3251 hypothetical protein (NCBI) 84, 252
PA3311 PA3311 hypothetical protein (NCBI) 349, 482
PA3921 PA3921 probable transcriptional regulator (NCBI) 252, 482
PA3922 PA3922 hypothetical protein (NCBI) 252, 515
PA3923 PA3923 hypothetical protein (NCBI) 252, 515
PA3924 PA3924 acyl-CoA synthase (NCBI) 252, 294
PA4297 PA4297 hypothetical protein (NCBI) 54, 482
PA4298 PA4298 hypothetical protein (NCBI) 54, 482
PA4300 PA4300 hypothetical protein (NCBI) 54, 482
PA4304 PA4304 probable type II secretion system protein (NCBI) 54, 482
PA4362 PA4362 hypothetical protein (NCBI) 382, 482
PA5059 PA5059 probable transcriptional regulator (NCBI) 367, 482
PA5101 PA5101 hypothetical protein (NCBI) 200, 482
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA3921
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend