Organism : Rhodobacter sphaeroides 2.4.1 | Module List:
Module 358 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 358

There are 14 regulatory influences for Module 358

Regulator Table (14)
Regulator Name Type
RSP_1590 tf
RSP_0090 tf
RSP_2888 tf
RSP_1871 tf
RSP_1243 tf
RSP_0394 tf
RSP_0601 tf
RSP_0698 tf
RSP_2410 tf
RSP_0443 tf
RSP_0071 tf
RSP_2965 tf
RSP_3505 tf
RSP_0282 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
8414 2.30e-01 AtcCccTtttcagCtTctt
Loader icon
8415 1.60e+02 at.t.gAtgtaggt.aAg..att
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 358 is enriched for following functions.

Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 358

There are 28 genes in Module 358

Gene Member Table (28)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
RSP_0015 RSP_0015 CDS None chromosome 1 1716318 1717415 - ABC spermidine/putrescine transporter, ATPase subunit (NCBI) False
RSP_0090 smoC CDS None chromosome 1 1800089 1801042 + Operon regulator SmoC (NCBI) True
RSP_0111N RSP_0111N DUMMY None chromosome 1 0 0 + None False
RSP_0223 RSP_0223 CDS None chromosome 1 1938711 1939982 + hypothetical protein (NCBI) False
RSP_0224 RSP_0224 CDS None chromosome 1 1939988 1942159 + ATP-dependent helicase (NCBI) False
RSP_0282 ppsR CDS None chromosome 1 2007910 2009304 - Transcriptional regulator, PpsR (NCBI) True
RSP_0468 RSP_0468 CDS None chromosome 1 2203188 2203742 + putative 3-octaprenyl-4-hydroxybenzoate carboxy-lyase (NCBI) False
RSP_0582 RSP_0582 CDS None chromosome 1 2324005 2325462 + possible penicillin binding protein (NCBI) False
RSP_0712 recR CDS None chromosome 1 2458319 2458918 + recombination protein RecR (NCBI) False
RSP_0889 glnK CDS None chromosome 1 2637879 2638217 - Nitrogen regulatory protein P-II (NCBI) False
RSP_1565 appA CDS None chromosome 1 155130 156482 - AppA, antirepressor of ppsR, sensor of blue light (NCBI) False
RSP_1590 RSP_1590 CDS None chromosome 1 182539 183996 - two component, sigma54 specific, transcriptional regulator, fis family (NCBI) True
RSP_2042 RSP_2042 CDS None chromosome 1 636959 637414 - hypothetical protein (NCBI) False
RSP_2044 RSP_2044 CDS None chromosome 1 637688 639064 + ATPase (NCBI) False
RSP_2047 RSP_2047 CDS None chromosome 1 642382 644187 + ThiF family protein (NCBI) False
RSP_2048 RSP_2048 CDS None chromosome 1 644180 644698 + hypothetical protein (NCBI) False
RSP_2210 RSP_2210 CDS None chromosome 1 823112 824689 - ABC sugar transporter, fused ATPase subunits (NCBI) False
RSP_2338 RSP_2338 CDS None chromosome 1 964900 965262 + hypothetical protein (NCBI) False
RSP_2415 RSP_2415 CDS None chromosome 1 1046578 1047969 + hypothetical protein (NCBI) False
RSP_2416 RSP_2416 CDS None chromosome 1 1047977 1048927 + hypothetical protein (NCBI) False
RSP_2417 RSP_2417 CDS None chromosome 1 1048924 1049733 + hypothetical protein (NCBI) False
RSP_3215 RSP_3215 CDS None chromosome 2 269476 272856 - hypothetical protein (NCBI) False
RSP_3750 RSP_3750 CDS None chromosome 2 875974 876336 - hypothetical protein (NCBI) False
RSP_3751 RSP_3751 CDS None chromosome 2 876414 876809 - hypothetical protein (NCBI) False
RSP_3752 RSP_3752 CDS None chromosome 2 876818 878074 - hypothetical protein (NCBI) False
RSP_3755 RSP_3755 CDS None chromosome 2 880247 881680 - hypothetical protein (NCBI) False
RSP_3756 RSP_3756 CDS None chromosome 2 881677 882762 - hypothetical protein (NCBI) False
RSP_3757 RSP_3757 CDS None chromosome 2 882749 884347 - hypothetical protein (NCBI) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.