Organism : Clostridium acetobutylicum | Module List :
CAC0240

Response regulator (CheY-like recever domain and HTH DNA-binding domain) (NCBI ptt file)

CircVis
Functional Annotations (8)
Function System
Response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain cog/ cog
two-component response regulator activity go/ molecular_function
two-component signal transduction system (phosphorelay) go/ biological_process
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
protein-glutamate methylesterase activity go/ molecular_function
sequence-specific DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC0240
(Mouseover regulator name to see its description)

CAC0240 is regulated by 18 influences and regulates 13 modules.
Regulators for CAC0240 (18)
Regulator Module Operator
CAC0144 349 tf
CAC0240 349 tf
CAC1928 349 tf
CAC2471 349 tf
CAC3271 349 tf
CAC3525 349 tf
CAC3646 349 tf
CAC0183 210 tf
CAC0240 210 tf
CAC0254 210 tf
CAC0402 210 tf
CAC0474 210 tf
CAC0865 210 tf
CAC2222 210 tf
CAC2471 210 tf
CAC2842 210 tf
CAC3525 210 tf
CAC3603 210 tf
Regulated by CAC0240 (13)
Module Residual Genes
30 0.33 20
120 0.31 15
124 0.22 15
129 0.20 9
163 0.33 13
173 0.33 19
191 0.42 24
210 0.30 17
228 0.31 16
272 0.53 19
291 0.34 23
327 0.35 18
349 0.35 18
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7072 3.50e-03 aGGaGg
Loader icon
7073 2.10e+02 AGGgAGaG
Loader icon
7350 8.40e+02 CcgTTGat..tcc
Loader icon
7351 5.00e+02 AAAgGAgaatG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC0240

CAC0240 is enriched for 8 functions in 3 categories.
Module neighborhood information for CAC0240

CAC0240 has total of 33 gene neighbors in modules 210, 349
Gene neighbors (33)
Gene Common Name Description Module membership
CAC0240 CAC0240 Response regulator (CheY-like recever domain and HTH DNA-binding domain) (NCBI ptt file) 210, 349
CAC0346 CAC0346 Hypothetical protein (NCBI ptt file) 210, 349
CAC0348 CAC0348 Hypothetical protein, CF-21 family (NCBI ptt file) 124, 210
CAC0369 CAC0369 Predicted acetyltransferase (NCBI ptt file) 124, 210
CAC0545 CAC0545 Uncharacterized small protein, homolog of Treponema (6136517) (NCBI ptt file) 30, 210
CAC0740 CAC0740 Uncharacterized conserved protein, YlxP family (NCBI ptt file) 101, 210
CAC0781 CAC0781 Hypothetical protein (NCBI ptt file) 210, 337
CAC0964 CAC0964 Hypothetical protein (NCBI ptt file) 105, 210
CAC1623 CAC1623 Uncharacterized protein, ortholog of Thermotoga (4980645) (NCBI ptt file) 210, 298
CAC1636 CAC1636 Uncharacterized protein, homolog of B. firmus (2654481) (NCBI ptt file) 291, 349
CAC1637 CAC1637 Hypothetical protein, CF-12 family (NCBI ptt file) 44, 349
CAC1638 CAC1638 Hypothetical protein, CF-37 family(almost identical) (NCBI ptt file) 291, 349
CAC1639 CAC1639 Hypothetical protein, CF-7 family (NCBI ptt file) 291, 349
CAC1640 CAC1640 Uncharacterized protein, YQCG B.subtilis homolog; CF-7 family (NCBI ptt file) 291, 349
CAC1855 CAC1855 Hypothetical protein (NCBI ptt file) 63, 210
CAC2551 CAC2551 RNAse H family protein (NCBI ptt file) 19, 349
CAC2557 CAC2557 Hypothetical protein (NCBI ptt file) 223, 349
CAC2561 CAC2561 Predicted acetyltransferase (NCBI ptt file) 113, 210
CAC2932 CAC2932 ABC-type MDR transporter, ATPase component (NCBI ptt file) 223, 349
CAC2974 CAC2974 Predicted protease from collagenase family (NCBI ptt file) 210, 273
CAC3026 CAC3026 Protein from GDSL (phospholipase B) family of lipolitic enzymes (NCBI ptt file) 124, 210
CAC3294 CAC3294 Hypothetical protein (NCBI ptt file) 210, 337
CAC3472 CAC3472 Protein containing transcriptional regulator domain (NCBI ptt file) 349, 357
CAC3511 CAC3511 Membrane associated methyl-accepting chemotaxis protein with HAMP domain (NCBI ptt file) 210, 357
CAC3525 CAC3525 Uncharacterized conserved protein, YjeB/RRF2 family (NCBI ptt file) 223, 349
CAC3534 CAC3534 Site-specific modification DNA-methyltransferase (NCBI ptt file) 120, 349
CAC3575 fabD Malonyl CoA-acyl carrier protein transacylase (NCBI ptt file) 210, 337
CAC3661 CAC3661 Glycosyltransferase (NCBI ptt file) 210, 273
CAC3703 CAC3703 Hypothetical protein (NCBI ptt file) 44, 349
CAC3705 CAC3705 Hypothetical protein, CF-37 family(almost identical) (NCBI ptt file) 44, 349
CAC3706 CAC3706 Hypothetical protein, CF-12 family (NCBI ptt file) 44, 349
CAC3707 CAC3707 Uncharacterized protein, homolog of Bacillus firmus (gi:2654481) (NCBI ptt file) 44, 349
CAC3713 CAC3713 Uncharacterized conserved protein, yukE/yfjA B.subtilis family (NCBI ptt file) 44, 349
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC0240
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend