Organism : Pseudomonas aeruginosa | Module List :
PA3034

probable transcriptional regulator (NCBI)

CircVis
Functional Annotations (4)
Function System
sequence-specific DNA binding transcription factor activity go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
specific transcriptional repressor activity go/ molecular_function
negative regulation of transcription, DNA-dependent go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA3034
(Mouseover regulator name to see its description)

PA3034 is regulated by 24 influences and regulates 12 modules.
Regulators for PA3034 (24)
Regulator Module Operator
PA0125 41 tf
PA0306 41 tf
PA0424 41 tf
PA0455 41 tf
PA0456 41 tf
PA0961 41 tf
PA1269 41 tf
PA1455 41 tf
PA1504 41 tf
PA1864 41 tf
PA2123 41 tf
PA2534 41 tf
PA2586 41 tf
PA2692 41 tf
PA3034 41 tf
PA3266 41 tf
PA3285 41 tf
PA3341 41 tf
PA3364 41 tf
PA4451 41 tf
PA4764 41 tf
PA5337 41 tf
PA5356 41 tf
PA5525 41 tf
Regulated by PA3034 (12)
Module Residual Genes
15 0.42 12
41 0.56 20
176 0.51 20
224 0.61 26
227 0.32 10
251 0.53 27
368 0.59 18
378 0.51 18
455 0.53 22
457 0.56 26
502 0.36 15
547 0.47 21
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2914 2.10e-01 tA.AaTgcccGgttt
Loader icon
2915 1.40e+01 Aat.AcAc..aGcCg.atgAAata
Loader icon
3268 3.90e+00 ATAATcGggCGctct
Loader icon
3269 1.20e+04 aaTgcgtgatccGaaAtAaTC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA3034

PA3034 is enriched for 4 functions in 2 categories.
Enrichment Table (4)
Function System
sequence-specific DNA binding transcription factor activity go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
specific transcriptional repressor activity go/ molecular_function
negative regulation of transcription, DNA-dependent go/ biological_process
Module neighborhood information for PA3034

PA3034 has total of 52 gene neighbors in modules 41, 220
Gene neighbors (52)
Gene Common Name Description Module membership
PA0168 PA0168 hypothetical protein (NCBI) 220, 316
PA0243 PA0243 probable transcriptional regulator (NCBI) 72, 220
PA0308 PA0308 hypothetical protein (NCBI) 220, 490
PA0351 PA0351 hypothetical protein (NCBI) 72, 220
PA0433 PA0433 hypothetical protein (NCBI) 187, 220
PA0487 PA0487 probable molybdenum transport regulator (NCBI) 220, 523
PA0538 dsbB disulfide bond formation protein (NCBI) 220, 498
PA0837 slyD peptidyl-prolyl cis-trans isomerase SlyD (NCBI) 6, 41
PA0846 PA0846 putative sulfate transport protein CysZ (NCBI) 117, 220
PA0868 PA0868 hypothetical protein (NCBI) 72, 220
PA0946 PA0946 hypothetical protein (NCBI) 123, 220
PA1047 PA1047 probable esterase (NCBI) 220, 420
PA1117 PA1117 hypothetical protein (NCBI) 41, 296
PA1160 PA1160 hypothetical protein (NCBI) 41, 281
PA1315 PA1315 probable transcriptional regulator (NCBI) 220, 438
PA1357 PA1357 hypothetical protein (NCBI) 72, 220
PA1398 PA1398 hypothetical protein (NCBI) 220, 229
PA1440 PA1440 hypothetical protein (NCBI) 41, 251
PA1558 PA1558 hypothetical protein (NCBI) 220, 457
PA1564 PA1564 hypothetical protein (NCBI) 41, 261
PA1741 PA1741 hypothetical protein (NCBI) 41, 455
PA1862 modB molybdenum transport protein ModB (NCBI) 220, 263
PA1996 ppiC1 peptidyl-prolyl cis-trans isomerase C1 (NCBI) 41, 338
PA2045 PA2045 hypothetical protein (NCBI) 41, 100
PA2823 PA2823 hypothetical protein (NCBI) 220, 315
PA2832 tpm thiopurine methyltransferase (NCBI) 70, 220
PA3004 PA3004 purine nucleoside phosphorylase (NCBI) 165, 220
PA3009 PA3009 hypothetical protein (NCBI) 41, 224
PA3033 PA3033 hypothetical protein (NCBI) 117, 220
PA3034 PA3034 probable transcriptional regulator (NCBI) 41, 220
PA3109 PA3109 hypothetical protein (NCBI) 41, 126
PA3285 PA3285 probable sigma-70 factor, ECF subfamily (NCBI) 41, 195
PA3341 PA3341 probable transcriptional regulator (NCBI) 41, 224
PA3755 PA3755 hypothetical protein (NCBI) 41, 57
PA3756 PA3756 hypothetical protein (NCBI) 41, 57
PA3855 PA3855 hypothetical protein (NCBI) 220, 268
PA3859 PA3859 carboxylesterase (NCBI) 220, 225
PA3887 nhaP Na+/H+ antiporter NhaP (NCBI) 220, 490
PA3895 PA3895 probable transcriptional regulator (NCBI) 220, 268
PA3896 PA3896 probable 2-hydroxyacid dehydrogenase (NCBI) 220, 374
PA4339 PA4339 probable phospholipase (NCBI) 20, 220
PA4548 PA4548 probable D-amino acid oxidase (NCBI) 8, 220
PA4963 PA4963 hypothetical protein (NCBI) 41, 251
PA5062 PA5062 hypothetical protein (NCBI) 41, 170
PA5085 PA5085 probable transcriptional regulator (NCBI) 220, 266
PA5175 cysQ CysQ protein (NCBI) 220, 321
PA5199 envZ two-component sensor EnvZ (NCBI) 220, 253
PA5276 lppL Lipopeptide LppL precursor (NCBI) 41, 228
PA5331 pyrE orotate phosphoribosyltransferase (NCBI) 41, 352
PA5332 crc catabolite repression control protein (NCBI) 41, 352
PA5370 PA5370 probable major facilitator superfamily (MFS) transporter (NCBI) 58, 220
PA5529 PA5529 probable sodium/proton antiporter (NCBI) 220, 422
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA3034
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend