Organism : Pseudomonas aeruginosa | Module List :
PA5483 algB

two-component response regulator AlgB (NCBI)

CircVis
Functional Annotations (10)
Function System
Response regulator containing CheY-like receiver, AAA-type ATPase, and DNA-binding domains cog/ cog
two-component response regulator activity go/ molecular_function
two-component signal transduction system (phosphorelay) go/ biological_process
sequence-specific DNA binding transcription factor activity go/ molecular_function
ATP binding go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
transcription factor binding go/ molecular_function
nucleoside-triphosphatase activity go/ molecular_function
Two-component system kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA5483
(Mouseover regulator name to see its description)

PA5483 is regulated by 34 influences and regulates 61 modules.
Regulators for PA5483 algB (34)
Regulator Module Operator
PA0763 107 tf
PA1099 107 tf
PA2047 107 tf
PA3604 107 tf
PA3622 107 tf
PA4275 107 tf
PA4354 107 tf
PA4890 107 tf
PA5261 107 tf
PA5382 107 tf
PA5403 107 tf
PA5483 107 tf
PA0034 221 tf
PA0610 221 tf
PA0652 221 tf
PA0762 221 tf
PA1097 221 tf
PA1099 221 tf
PA1226 221 tf
PA1397 221 tf
PA2258 221 tf
PA2387 221 tf
PA2469 221 tf
PA2577 221 tf
PA2896 221 tf
PA3067 221 tf
PA3269 221 tf
PA3604 221 tf
PA3699 221 tf
PA4296 221 tf
PA5085 221 tf
PA5261 221 tf
PA5324 221 tf
PA5483 221 tf
Regulated by PA5483 (61)
Module Residual Genes
6 0.53 23
7 0.53 25
10 0.53 20
27 0.50 22
28 0.53 23
45 0.44 18
55 0.48 19
64 0.42 12
66 0.43 19
76 0.46 21
84 0.50 22
85 0.47 25
91 0.52 20
95 0.46 16
107 0.45 16
147 0.35 9
154 0.35 12
161 0.41 19
163 0.56 25
166 0.58 24
169 0.39 10
185 0.54 19
191 0.55 21
194 0.41 17
214 0.50 19
215 0.53 19
221 0.47 25
233 0.42 13
238 0.54 20
262 0.40 11
265 0.49 21
273 0.49 17
280 0.46 24
298 0.21 15
318 0.41 19
322 0.45 19
328 0.55 21
341 0.58 19
361 0.53 23
363 0.48 19
370 0.42 13
378 0.51 18
387 0.58 33
399 0.49 18
430 0.40 10
431 0.44 19
437 0.49 22
441 0.51 18
450 0.57 23
455 0.53 22
479 0.44 17
487 0.49 23
490 0.52 19
495 0.33 12
496 0.47 21
501 0.51 17
504 0.39 11
521 0.48 26
533 0.38 14
547 0.47 21
551 0.56 23
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3046 1.30e+04 TTAGGTAA
Loader icon
3047 8.50e+03 AAaCcActTC
Loader icon
3270 3.90e+03 AgCGTCaa.CATT
Loader icon
3271 6.40e+02 TgtTgcgCct
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA5483

PA5483 is enriched for 10 functions in 3 categories.
Module neighborhood information for PA5483

PA5483 has total of 39 gene neighbors in modules 107, 221
Gene neighbors (39)
Gene Common Name Description Module membership
PA0062 PA0062 hypothetical protein (NCBI) 85, 221
PA0103 PA0103 probable sulfate transporter (NCBI) 85, 221
PA0309 PA0309 hypothetical protein (NCBI) 221, 551
PA0567 PA0567 hypothetical protein (NCBI) 107, 441
PA0853 PA0853 probable oxidoreductase (NCBI) 107, 154
PA0854 fumC2 fumarate hydratase (NCBI) 107, 154
PA1323 PA1323 hypothetical protein (NCBI) 107, 154
PA1408 PA1408 hypothetical protein (NCBI) 28, 107
PA1562 acnA aconitate hydratase 1 (NCBI) 107, 399
PA1605 PA1605 hypothetical protein (NCBI) 85, 107
PA1889 PA1889 hypothetical protein (NCBI) 221, 547
PA1944 PA1944 hypothetical protein (NCBI) 107, 441
PA2145 PA2145 hypothetical protein (NCBI) 27, 221
PA3069 PA3069 hypothetical protein (NCBI) 85, 221
PA3459 PA3459 probable glutamine amidotransferase (NCBI) 107, 328
PA3460 PA3460 probable acetyltransferase (NCBI) 107, 328
PA3461 PA3461 hypothetical protein (NCBI) 107, 328
PA3540 algD GDP-mannose 6-dehydrogenase AlgD (NCBI) 85, 221
PA3541 alg8 alginate biosynthesis protein Alg8 (NCBI) 85, 221
PA3542 alg44 alginate biosynthesis protein Alg44 (NCBI) 85, 221
PA3543 algK alginate biosynthetic protein AlgK precursor (NCBI) 85, 221
PA3544 algE Alginate production outer membrane protein AlgE precursor (NCBI) 85, 221
PA3545 algG alginate-c5-mannuronan-epimerase AlgG (NCBI) 85, 221
PA3546 algX alginate biosynthesis protein AlgX (NCBI) 85, 221
PA3547 algL poly(beta-D-mannuronate) lyase (NCBI) 85, 221
PA3548 algI alginate o-acetyltransferase AlgI (NCBI) 85, 221
PA3549 algJ alginate o-acetyltransferase AlgJ (NCBI) 85, 221
PA3550 algF alginate o-acetyltransferase AlgF (NCBI) 85, 221
PA3551 algA phosphomannose isomerase / guanosine 5'-diphospho-D-mannose pyrophosphorylase (NCBI) 85, 221
PA3762 PA3762 hypothetical protein (NCBI) 221, 547
PA3795 PA3795 probable oxidoreductase (NCBI) 107, 361
PA4154 PA4154 hypothetical protein (NCBI) 85, 221
PA4204 PA4204 hypothetical protein (NCBI) 107, 361
PA4338 PA4338 hypothetical protein (NCBI) 85, 221
PA4880 PA4880 probable bacterioferritin (NCBI) 107, 154
PA5183 PA5183 hypothetical protein (NCBI) 85, 221
PA5423 PA5423 hypothetical protein (NCBI) 221, 457
PA5483 algB two-component response regulator AlgB (NCBI) 107, 221
PA5484 PA5484 probable two-component sensor (NCBI) 107, 221
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA5483
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend