Organism : Bacillus cereus ATCC14579 | Module List :
BC0468

DNA-3-methyladenine glycosylase II (NCBI ptt file)

CircVis
Functional Annotations (4)
Function System
3-methyladenine DNA glycosylase/8-oxoguanine DNA glycosylase cog/ cog
alkylbase DNA N-glycosylase activity go/ molecular_function
base-excision repair go/ biological_process
Base excision repair kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0468
(Mouseover regulator name to see its description)

BC0468 is regulated by 33 influences and regulates 0 modules.
Regulators for BC0468 (33)
Regulator Module Operator
BC0114 242 tf
BC0116 242 tf
BC0122 242 tf
BC0518 242 tf
BC0607 242 tf
BC1531 242 tf
BC1987 242 tf
BC2068 242 tf
BC2133 242 tf
BC2551 242 tf
BC2672 242 tf
BC2760 242 tf
BC2766 242 tf
BC3653 242 tf
BC3813 242 tf
BC3814 242 tf
BC3982 242 tf
BC4525 242 tf
BC4650 242 tf
BC5340 242 tf
BC0059 252 tf
BC1531 252 tf
BC1731 252 tf
BC1850 252 tf
BC2133 252 tf
BC2631 252 tf
BC3062 252 tf
BC3332 252 tf
BC3653 252 tf
BC3813 252 tf
BC3814 252 tf
BC4316 252 tf
BC5340 252 tf

Warning: BC0468 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4400 2.80e-03 gAgaaAgG
Loader icon
4401 1.10e+04 GGAGTGcG
Loader icon
4420 7.90e+01 ataaaaAAaGagGatgaAAtAc
Loader icon
4421 9.60e+03 GCCCcC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0468

BC0468 is enriched for 4 functions in 3 categories.
Enrichment Table (4)
Function System
3-methyladenine DNA glycosylase/8-oxoguanine DNA glycosylase cog/ cog
alkylbase DNA N-glycosylase activity go/ molecular_function
base-excision repair go/ biological_process
Base excision repair kegg/ kegg pathway
Module neighborhood information for BC0468

BC0468 has total of 39 gene neighbors in modules 242, 252
Gene neighbors (39)
Gene Common Name Description Module membership
BC0024 BC0024 DNA polymerase III subunit gamma/tau (NCBI ptt file) 88, 252
BC0286 BC0286 ATP/GTP hydrolase (NCBI ptt file) 252, 351
BC0341 BC0341 NAD-dependent DNA ligase (NCBI ptt file) 252, 351
BC0364 BC0364 tRNA (Uracil-5-) -methyltransferase (NCBI ptt file) 55, 242
BC0468 BC0468 DNA-3-methyladenine glycosylase II (NCBI ptt file) 242, 252
BC0497 BC0497 Cell division inhibitor (NCBI ptt file) 222, 252
BC0609 BC0609 Lactoylglutathione lyase (NCBI ptt file) 252, 329
BC0694 BC0694 Na+/H+ antiporter NapA (NCBI ptt file) 243, 252
BC1035 BC1035 Glycerol kinase (NCBI ptt file) 252, 329
BC1300 BC1300 Two-component response regulator (NCBI ptt file) 252, 329
BC1301 BC1301 Two component system histidine kinase (NCBI ptt file) 252, 329
BC1351 BC1351 hypothetical protein (NCBI ptt file) 242, 466
BC1353 BC1353 NrdI protein (NCBI ptt file) 242, 319
BC1742 BC1742 Two component system histidine kinase (NCBI ptt file) 252, 361
BC1743 BC1743 Two-component response regulator (NCBI ptt file) 243, 252
BC1804 BC1804 Rhodanese-related sulfurtransferases (NCBI ptt file) 252, 467
BC3228 BC3228 Two-component response regulator (NCBI ptt file) 55, 242
BC3843 BC3843 Signal recognition particle, subunit Ffh/SRP54 (NCBI ptt file) 252, 476
BC3859 BC3859 GTPase (NCBI ptt file) 242, 319
BC4295 BC4295 DNA repair protein recO (NCBI ptt file) 252, 257
BC4315 BC4315 Coproporphyrinogen oxidase, anaerobic (NCBI ptt file) 243, 252
BC4440 BC4440 Stage IV sporulation protein FB (NCBI ptt file) 252, 285
BC4443 BC4443 Cell division inhibitor MinC (NCBI ptt file) 242, 374
BC4445 BC4445 Rod shape-determining protein mreC (NCBI ptt file) 192, 242
BC4446 BC4446 Rod shape-determining protein mreB (NCBI ptt file) 192, 242
BC4461 BC4461 DNA repair protein radC (NCBI ptt file) 222, 242
BC4579 BC4579 Primosomal protein dnaI (NCBI ptt file) 252, 351
BC4580 BC4580 Replication initiation and membrane attachment protein (NCBI ptt file) 252, 450
BC4673 BC4673 hypothetical protein (NCBI ptt file) 243, 252
BC4738 BC4738 Multidrug resistance protein B (NCBI ptt file) 242, 311
BC4810 BC4810 Two-component response regulator (NCBI ptt file) 242, 263
BC4811 BC4811 Fimbria-associated protein (NCBI ptt file) 242, 461
BC5160 BC5160 TPR-repeat-containing protein (NCBI ptt file) 242, 451
BC5182 BC5182 Multidrug resistance ABC transporter ATP-binding and permease protein (NCBI ptt file) 252, 467
BC5457 BC5457 hypothetical protein (NCBI ptt file) 143, 252
BC5458 BC5458 Protease Do (NCBI ptt file) 242, 245
BC5460 BC5460 hypothetical protein (NCBI ptt file) 252, 288
BC5462 BC5462 Two-component sensor kinase yycG (NCBI ptt file) 252, 374
BC5485 BC5485 Glucose inhibited division protein A (NCBI ptt file) 240, 252
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0468
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend