Organism : Bacillus cereus ATCC14579 | Module List :
BC0917

hypothetical Cytosolic Protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC0917
(Mouseover regulator name to see its description)

BC0917 is regulated by 22 influences and regulates 0 modules.
Regulators for BC0917 (22)
Regulator Module Operator
BC1329 391 tf
BC2469 391 tf
BC2517 391 tf
BC2837 391 tf
BC2964 391 tf
BC3587 391 tf
BC3903 391 tf
BC3904 391 tf
BC4256 391 tf
BC4499 391 tf
BC5200 391 tf
BC0116 121 tf
BC0659 121 tf
BC1449 121 tf
BC2514 121 tf
BC2551 121 tf
BC3163 121 tf
BC3255 121 tf
BC3426 121 tf
BC3690 121 tf
BC3704 121 tf
BC3922 121 tf

Warning: BC0917 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4158 8.30e-23 .GAACAtAtGTTCt.ttTttg
Loader icon
4159 1.90e+03 GcccTGCTGCCCc
Loader icon
4692 1.10e+00 acttc.acTaattAgGa.ag
Loader icon
4693 1.80e+04 CAcCacATTgc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC0917

Warning: No Functional annotations were found!

Module neighborhood information for BC0917

BC0917 has total of 37 gene neighbors in modules 121, 391
Gene neighbors (37)
Gene Common Name Description Module membership
BC0338 BC0338 hypothetical protein (NCBI ptt file) 387, 391
BC0465 BC0465 hypothetical protein (NCBI ptt file) 391, 464
BC0917 BC0917 hypothetical Cytosolic Protein (NCBI ptt file) 121, 391
BC0926 BC0926 hypothetical protein (NCBI ptt file) 391, 525
BC1041 BC1041 ATP-dependent DNA helicase rep (NCBI ptt file) 121, 457
BC1137 BC1137 ATP-dependent nuclease subunit B (NCBI ptt file) 121, 457
BC1138 BC1138 ATP-dependent nuclease subunit A (NCBI ptt file) 121, 457
BC1158 BC1158 Transcriptional regulator, XRE family (NCBI ptt file) 316, 391
BC1187 BC1187 hypothetical protein (NCBI ptt file) 121, 457
BC1493 BC1493 hypothetical protein (NCBI ptt file) 121, 457
BC1816 BC1816 hypothetical protein (NCBI ptt file) 391, 464
BC1829 BC1829 Quinolone resistance protein (NCBI ptt file) 121, 457
BC2353 BC2353 Stage 0 sporulation regulatory protein (NCBI ptt file) 391, 413
BC2431 BC2431 PhnB protein (NCBI ptt file) 121, 457
BC2432 BC2432 Methyltransferase (NCBI ptt file) 121, 457
BC2481 BC2481 hypothetical protein (NCBI ptt file) 278, 391
BC2512 BC2512 hypothetical protein (NCBI ptt file) 121, 457
BC2513 BC2513 Excinuclease ABC subunit A (NCBI ptt file) 121, 457
BC2514 BC2514 Transcriptional regulator, MerR family (NCBI ptt file) 121, 457
BC2589 BC2589 Phage protein (NCBI ptt file) 95, 391
BC2591 BC2591 Phage protein (NCBI ptt file) 95, 391
BC2639 BC2639 Cell surface protein (NCBI ptt file) 359, 391
BC2674 BC2674 hypothetical protein (NCBI ptt file) 121, 457
BC3281 BC3281 hypothetical protein (NCBI ptt file) 121, 457
BC3596 BC3596 Topoisomerase IV subunit A (NCBI ptt file) 121, 457
BC3597 BC3597 Topoisomerase IV subunit B (NCBI ptt file) 121, 457
BC3626 BC3626 hypothetical Cytosolic Protein (NCBI ptt file) 121, 457
BC3659 BC3659 hypothetical protein (NCBI ptt file) 121, 457
BC3779 BC3779 RecA protein (NCBI ptt file) 121, 457
BC4142 BC4142 DNA polymerase IV (RefSeq) 121, 457
BC4644 BC4644 PhnB protein (NCBI ptt file) 121, 457
BC4716 BC4716 Glucose uptake protein (NCBI ptt file) 156, 391
BC4717 BC4717 hypothetical protein (NCBI ptt file) 140, 391
BC4928 BC4928 DNA-binding protein YobU (NCBI ptt file) 121, 457
BC5078 BC5078 LSU ribosomal protein L11P (NCBI ptt file) 391, 488
BC5230 BC5230 hypothetical Membrane Spanning Protein (NCBI ptt file) 121, 457
BC5231 BC5231 hypothetical protein (NCBI ptt file) 121, 457
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC0917
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend