Organism : Bacillus cereus ATCC14579 | Module List :
BC1517

3-dehydroquinate synthase (NCBI ptt file)

CircVis
Functional Annotations (10)
Function System
3-dehydroquinate synthetase cog/ cog
3-dehydroquinate synthase activity go/ molecular_function
metabolic process go/ biological_process
aromatic amino acid family biosynthetic process go/ biological_process
oxidoreductase activity go/ molecular_function
metal ion binding go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroB tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC1517
(Mouseover regulator name to see its description)

BC1517 is regulated by 25 influences and regulates 0 modules.
Regulators for BC1517 (25)
Regulator Module Operator
BC0659 524 tf
BC2549 524 tf
BC2837 524 tf
BC3069 524 tf
BC3704 524 tf
BC4212 524 tf
BC4256 524 tf
BC4474 524 tf
BC4570 524 tf
BC4650 524 tf
BC0356 83 tf
BC0435 83 tf
BC0586 83 tf
BC0953 83 tf
BC1131 83 tf
BC1673 83 tf
BC1996 83 tf
BC2250 83 tf
BC2340 83 tf
BC2903 83 tf
BC3069 83 tf
BC4204 83 tf
BC4222 83 tf
BC4902 83 tf
BC5339 83 tf

Warning: BC1517 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4084 3.80e+02 AgACgAtgtgtTaccgcGg
Loader icon
4085 1.70e+03 gGgGGAa
Loader icon
4958 3.50e-03 AAGGGG
Loader icon
4959 7.00e+03 GcGGCaaGCG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC1517

BC1517 is enriched for 10 functions in 3 categories.
Enrichment Table (10)
Function System
3-dehydroquinate synthetase cog/ cog
3-dehydroquinate synthase activity go/ molecular_function
metabolic process go/ biological_process
aromatic amino acid family biosynthetic process go/ biological_process
oxidoreductase activity go/ molecular_function
metal ion binding go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroB tigr/ tigrfam
Module neighborhood information for BC1517

BC1517 has total of 45 gene neighbors in modules 83, 524
Gene neighbors (45)
Gene Common Name Description Module membership
BC0192 BC0192 Acylamino-acid-releasing enzyme (NCBI ptt file) 375, 524
BC0326 BC0326 phosphoribosylaminoimidazole-succinocarboxamidesynthase (RefSeq) 424, 524
BC0327 BC0327 Phosphorybosylformylglycinamidine synthetase, PurS component (NCBI ptt file) 72, 524
BC0328 BC0328 Phosphoribosylformylglycinamidine synthase (NCBI ptt file) 72, 524
BC0329 BC0329 Phosphoribosylformylglycinamidine synthase (NCBI ptt file) 424, 524
BC0331 BC0331 Phosphoribosylformylglycinamidine cyclo-ligase (NCBI ptt file) 424, 524
BC0332 BC0332 Phosphoribosylglycinamide formyltransferase (NCBI ptt file) 424, 524
BC0659 BC0659 Ribose operon repressor (NCBI ptt file) 417, 524
BC0660 BC0660 Ribokinase (NCBI ptt file) 417, 524
BC0661 BC0661 High affinity ribose transport protein rbsD (NCBI ptt file) 417, 524
BC0662 BC0662 Ribose transport ATP-binding protein rbsA (NCBI ptt file) 417, 524
BC0918 BC0918 IG hypothetical 23633 (NCBI ptt file) 401, 524
BC1019 BC1019 phosphoesterase (NCBI ptt file) 50, 524
BC1232 BC1232 Anthranilate synthase component I (NCBI ptt file) 83, 412
BC1233 BC1233 Anthranilate synthase component II (NCBI ptt file) 83, 297
BC1234 BC1234 Anthranilate phosphoribosyltransferase (NCBI ptt file) 83, 297
BC1235 BC1235 Indole-3-glycerol phosphate synthase (NCBI ptt file) 83, 297
BC1236 BC1236 N-(5'-phosphoribosyl)anthranilate isomerase (NCBI ptt file) 83, 297
BC1237 BC1237 Tryptophan synthase beta chain (NCBI ptt file) 83, 297
BC1238 BC1238 Tryptophan synthase alpha chain (NCBI ptt file) 83, 297
BC1517 BC1517 3-dehydroquinate synthase (NCBI ptt file) 83, 524
BC1522 BC1522 Menaquinol-cytochrome c reductase iron-sulfur subunit (NCBI ptt file) 83, 524
BC1629 BC1629 Chemotaxis protein cheC (NCBI ptt file) 50, 83
BC1630 BC1630 hypothetical protein (NCBI ptt file) 50, 83
BC1795 BC1795 hypothetical protein (NCBI ptt file) 460, 524
BC2397 BC2397 ATPase family protein (NCBI ptt file) 437, 524
BC2839 BC2839 Sarcosine oxidase alpha subunit (NCBI ptt file) 267, 524
BC2869 BC2869 N-acetylglucosaminyldiphosphoundecaprenol N-acetyl-beta-D-mannosaminyltransferase (NCBI ptt file) 279, 524
BC3063 BC3063 Pyrrolidone-carboxylate peptidase (NCBI ptt file) 83, 282
BC3065 BC3065 Permease (NCBI ptt file) 83, 140
BC4065 BC4065 Stage V sporulation protein AE (NCBI ptt file) 355, 524
BC4069 BC4069 Stage V sporulation protein AB (NCBI ptt file) 424, 524
BC4220 BC4220 ABC transporter permease protein (NCBI ptt file) 83, 411
BC4221 BC4221 ABC transporter ATP-binding protein (NCBI ptt file) 83, 150
BC4222 BC4222 Transcriptional regulator, GntR family (NCBI ptt file) 83, 411
BC4487 BC4487 Superfamily I DNA and RNA helicases (NCBI ptt file) 518, 524
BC4699 BC4699 None 3, 83
BC5079 BC5079 Short chain dehydrogenase (NCBI ptt file) 83, 150
BC5080 BC5080 Methyltransferase (NCBI ptt file) 83, 522
BC5081 BC5081 NADH oxidase (NOXASE) (NCBI ptt file) 83, 96
BC5082 BC5082 hypothetical protein (NCBI ptt file) 83, 525
BC5083 BC5083 Lantibiotic biosynthesis protein (NCBI ptt file) 83, 525
BC5084 BC5084 Lanthionine biosynthesis protein (NCBI ptt file) 83, 525
BC5085 BC5085 hypothetical Cytosolic Protein (NCBI ptt file) 83, 525
BC5334 BC5334 UDP-N-acetylglucosamine 1-carboxyvinyltransferase (NCBI ptt file) 54, 524
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC1517
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend