Organism : Bacillus cereus ATCC14579 | Module List :
BC2759

L-kynurenine hydrolase (NCBI ptt file)

CircVis
Functional Annotations (10)
Function System
Kynureninase cog/ cog
cytoplasm go/ cellular_component
tryptophan catabolic process go/ biological_process
transaminase activity go/ molecular_function
NAD biosynthetic process go/ biological_process
pyridoxal phosphate binding go/ molecular_function
kynureninase activity go/ molecular_function
Tryptophan metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
kynureninase tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC2759
(Mouseover regulator name to see its description)

BC2759 is regulated by 21 influences and regulates 0 modules.
Regulators for BC2759 (21)
Regulator Module Operator
BC0954 218 tf
BC1032 218 tf
BC1427 218 tf
BC1490 218 tf
BC2632 218 tf
BC2979 218 tf
BC3493 218 tf
BC4010 218 tf
BC5097 218 tf
BC0114 137 tf
BC0598 137 tf
BC0613 137 tf
BC0856 137 tf
BC0954 137 tf
BC1622 137 tf
BC1841 137 tf
BC2362 137 tf
BC2632 137 tf
BC3493 137 tf
BC3826 137 tf
BC4057 137 tf

Warning: BC2759 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4190 1.10e-11 tAGggGgaacaa
Loader icon
4191 2.80e-04 atAtgttAgAAtatTtAGAaaA
Loader icon
4352 9.70e-05 agagaGG.Gata.aa
Loader icon
4353 2.00e+04 CCATCGcccCTTGC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC2759

BC2759 is enriched for 10 functions in 3 categories.
Enrichment Table (10)
Function System
Kynureninase cog/ cog
cytoplasm go/ cellular_component
tryptophan catabolic process go/ biological_process
transaminase activity go/ molecular_function
NAD biosynthetic process go/ biological_process
pyridoxal phosphate binding go/ molecular_function
kynureninase activity go/ molecular_function
Tryptophan metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
kynureninase tigr/ tigrfam
Module neighborhood information for BC2759

BC2759 has total of 65 gene neighbors in modules 137, 218
Gene neighbors (65)
Gene Common Name Description Module membership
BC0012 BC0012 IG hypothetical 16768 (NCBI ptt file) 137, 225
BC0013 BC0013 Inosine-5'-monophosphate dehydrogenase (NCBI ptt file) 63, 137
BC0114 BC0114 RNA polymerase sigma-H factor (NCBI ptt file) 137, 405
BC0215 BC0215 Oligopeptide-binding protein oppA (NCBI ptt file) 137, 408
BC0374 BC0374 Amidohydrolase amhX (NCBI ptt file) 139, 218
BC0398 BC0398 Benzoate transport protein (NCBI ptt file) 76, 218
BC0582 BC0582 Transporter, Drug/Metabolite Exporter family (NCBI ptt file) 96, 218
BC0590 BC0590 hypothetical protein (NCBI ptt file) 48, 218
BC0827 BC0827 hypothetical protein (NCBI ptt file) 141, 218
BC0829 BC0829 hypothetical protein (NCBI ptt file) 86, 218
BC0859 BC0859 Oligopeptide-binding protein oppA (NCBI ptt file) 137, 139
BC1127 BC1127 Malate synthase (NCBI ptt file) 163, 218
BC1128 BC1128 Isocitrate lyase (NCBI ptt file) 218, 400
BC1149 BC1149 Ornithine aminotransferase (NCBI ptt file) 137, 488
BC1180 BC1180 Oligopeptide transport system permease protein oppB (NCBI ptt file) 23, 137
BC1181 BC1181 Oligopeptide transport system permease protein oppC (NCBI ptt file) 137, 434
BC1182 BC1182 Oligopeptide transport ATP-binding protein oppD (NCBI ptt file) 137, 358
BC1183 BC1183 Oligopeptide transport ATP-binding protein oppF (NCBI ptt file) 137, 434
BC1202 BC1202 Serine/threonine protein phosphatase (NCBI ptt file) 72, 218
BC1340 BC1340 Sporulation kinase (NCBI ptt file) 218, 434
BC1366 BC1366 SSEB protein (NCBI ptt file) 137, 284
BC1396 BC1396 Branched-chain amino acid aminotransferase (NCBI ptt file) 137, 330
BC1675 BC1675 Branched-chain amino acid transport protein azlD (NCBI ptt file) 218, 416
BC1799 BC1799 Ribosomal-protein-alanine acetyltransferase (NCBI ptt file) 34, 137
BC1912 BC1912 Phage protein (NCBI ptt file) 63, 137
BC1913 BC1913 Phage protein (NCBI ptt file) 63, 137
BC2013 BC2013 Alpha/beta hydrolase (NCBI ptt file) 52, 218
BC2042 BC2042 putative NAD-dependent dehydrogenase (NCBI ptt file) 218, 243
BC2094 BC2094 Acetyltransferase (NCBI ptt file) 137, 139
BC2142 BC2142 Stage V sporulation protein S (NCBI ptt file) 34, 137
BC2217 BC2217 Two-component response regulator yhcZ (NCBI ptt file) 218, 279
BC2281 BC2281 Multimodular transpeptidase-transglycosylase PBP 1A (NCBI ptt file) 218, 375
BC2395 BC2395 hypothetical protein (NCBI ptt file) 218, 321
BC2663 BC2663 None 218, 225
BC2757 BC2757 Tryptophan 2,3-dioxygenase (NCBI ptt file) 137, 218
BC2758 BC2758 Metal-dependent hydrolase (NCBI ptt file) 137, 258
BC2759 BC2759 L-kynurenine hydrolase (NCBI ptt file) 137, 218
BC2838 BC2838 hypothetical protein (NCBI ptt file) 76, 218
BC2899 BC2899 2'-5' RNA ligase (NCBI ptt file) 52, 218
BC3022 BC3022 hypothetical protein (NCBI ptt file) 127, 218
BC3124 BC3124 Isochorismatase family (NCBI ptt file) 218, 313
BC3162 BC3162 Bicyclomycin resistance protein (NCBI ptt file) 150, 218
BC3248 BC3248 D-3-phosphoglycerate dehydrogenase (NCBI ptt file) 218, 359
BC3494 BC3494 hypothetical protein (NCBI ptt file) 46, 137
BC3594 BC3594 PhnB protein (NCBI ptt file) 141, 218
BC3656 BC3656 Methyltransferase (NCBI ptt file) 218, 303
BC3657 BC3657 4-methyl-5(B-hydroxyethyl)-thiazole monophosphate biosynthesis enzyme (NCBI ptt file) 218, 359
BC3939 BC3939 Amidase (NCBI ptt file) 218, 461
BC3955 BC3955 hypothetical protein (NCBI ptt file) 137, 488
BC3968 BC3968 hypothetical protein (NCBI ptt file) 137, 491
BC3993 BC3993 Polyphosphate kinase (NCBI ptt file) 57, 218
BC4003 BC4003 5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase (NCBI ptt file) 194, 218
BC4042 BC4042 3-hydroxyisobutyrate dehydrogenase (NCBI ptt file) 193, 218
BC4082 BC4082 hypothetical protein (NCBI ptt file) 218, 361
BC4133 BC4133 Zinc metallohydrolase (NCBI ptt file) 137, 194
BC4427 BC4427 Prephenate dehydratase (NCBI ptt file) 73, 137
BC4598 BC4598 FxsA protein (NCBI ptt file) 31, 218
BC4668 BC4668 Virulence factor mviM (NCBI ptt file) 125, 218
BC4682 BC4682 IAA acetyltransferase (NCBI ptt file) 137, 175
BC4683 BC4683 Ribosomal-protein-serine acetyltransferase (NCBI ptt file) 137, 175
BC4767 BC4767 hypothetical protein (NCBI ptt file) 218, 405
BC5076 BC5076 Short chain dehydrogenase (NCBI ptt file) 73, 137
BC5077 BC5077 hypothetical protein (NCBI ptt file) 73, 137
BC5366 BC5366 Muramoyltetrapeptide carboxypeptidase (NCBI ptt file) 139, 218
BC5453 BC5453 Oligoendopeptidase F (NCBI ptt file) 137, 258
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC2759
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend