Organism : Bacillus cereus ATCC14579 | Module List :
BC2828

Acetyltransferase (NCBI ptt file)

CircVis
Functional Annotations (10)
Function System
Acetyltransferases cog/ cog
N-acetyltransferase activity go/ molecular_function
metabolic process go/ biological_process
Tyrosine metabolism kegg/ kegg pathway
Benzoate degradation kegg/ kegg pathway
Naphthalene degradation kegg/ kegg pathway
Aminobenzoate degradation kegg/ kegg pathway
Ethylbenzene degradation kegg/ kegg pathway
Limonene and pinene degradation kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC2828
(Mouseover regulator name to see its description)

BC2828 is regulated by 26 influences and regulates 0 modules.
Regulators for BC2828 (26)
Regulator Module Operator
BC0051 426 tf
BC1282 426 tf
BC1477 426 tf
BC2166 426 tf
BC2434 426 tf
BC3522 426 tf
BC3976 426 tf
BC4603 426 tf
BC4670 426 tf
BC5176 426 tf
BC5205 426 tf
BC5339 426 tf
BC5373 426 tf
BC0742 90 tf
BC0880 90 tf
BC1282 90 tf
BC1363 90 tf
BC1603 90 tf
BC1818 90 tf
BC2218 90 tf
BC2517 90 tf
BC2971 90 tf
BC2988 90 tf
BC4240 90 tf
BC5339 90 tf
BC5481 90 tf

Warning: BC2828 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4096 1.80e+02 cccCCTtT
Loader icon
4097 2.30e+04 CcTGCaAATaCGCc
Loader icon
4762 5.50e+00 AGgAGG
Loader icon
4763 6.10e+03 GCCaCcTCC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC2828

BC2828 is enriched for 10 functions in 3 categories.
Enrichment Table (10)
Function System
Acetyltransferases cog/ cog
N-acetyltransferase activity go/ molecular_function
metabolic process go/ biological_process
Tyrosine metabolism kegg/ kegg pathway
Benzoate degradation kegg/ kegg pathway
Naphthalene degradation kegg/ kegg pathway
Aminobenzoate degradation kegg/ kegg pathway
Ethylbenzene degradation kegg/ kegg pathway
Limonene and pinene degradation kegg/ kegg pathway
Microbial metabolism in diverse environments kegg/ kegg pathway
Module neighborhood information for BC2828

BC2828 has total of 33 gene neighbors in modules 90, 426
Gene neighbors (33)
Gene Common Name Description Module membership
BC0159 BC0159 LSU ribosomal protein L17P (NCBI ptt file) 90, 430
BC0446 BC0446 hypothetical tellurium resistance protein (NCBI ptt file) 118, 426
BC0457 BC0457 Tetratricopeptide repeat family protein (NCBI ptt file) 90, 296
BC0546 BC0546 23S rRNA methyltransferase (NCBI ptt file) 90, 380
BC0684 BC0684 Di-/tripeptide transporter (NCBI ptt file) 169, 426
BC0739 BC0739 hypothetical protein (NCBI ptt file) 90, 478
BC0740 BC0740 Cell wall endopeptidase, family M23/M37 (NCBI ptt file) 15, 90
BC1530 BC1530 hypothetical Membrane Spanning Protein (NCBI ptt file) 235, 426
BC1598 BC1598 LACX protein (NCBI ptt file) 90, 296
BC1924 BC1924 L-lactate dehydrogenase (NCBI ptt file) 90, 100
BC2166 BC2166 Transcriptional regulator, TetR family (NCBI ptt file) 369, 426
BC2210 BC2210 NAD(P)H nitroreductase (NCBI ptt file) 90, 406
BC2671 BC2671 ThiJ/PfpI family (NCBI ptt file) 20, 90
BC2828 BC2828 Acetyltransferase (NCBI ptt file) 90, 426
BC2879 BC2879 hypothetical protein (NCBI ptt file) 90, 227
BC2938 BC2938 3-phosphoshikimate 1-carboxyvinyltransferase (NCBI ptt file) 51, 426
BC2987 BC2987 hypothetical Membrane Spanning Protein (NCBI ptt file) 90, 304
BC2989 BC2989 hypothetical protein (NCBI ptt file) 90, 304
BC3798 BC3798 Aspartokinase (NCBI ptt file) 371, 426
BC3799 BC3799 Aspartate-semialdehyde dehydrogenase (NCBI ptt file) 371, 426
BC3873 BC3873 Fibronectin-binding protein / Fibrinogen-binding protein (NCBI ptt file) 406, 426
BC3896 BC3896 Cell division protein DIVIVA (NCBI ptt file) 406, 426
BC4333 BC4333 putative lipase (NCBI ptt file) 275, 426
BC4406 BC4406 hypothetical protein (NCBI ptt file) 406, 426
BC4519 BC4519 hypothetical Cytosolic Protein (NCBI ptt file) 90, 304
BC4728 BC4728 Molybdopterin biosynthesis MoeB protein (NCBI ptt file) 41, 90
BC4815 BC4815 Hypoxanthine-guanine phosphoribosyltransferase (NCBI ptt file) 90, 198
BC4861 BC4861 hypothetical protein (NCBI ptt file) 90, 380
BC4913 BC4913 hypothetical protein (NCBI ptt file) 15, 90
BC5189 BC5189 Protein translocase subunit SecA (NCBI ptt file) 70, 426
BC5220 BC5220 Lactoylglutathione lyase (NCBI ptt file) 90, 198
BC5380 BC5380 Ferrichrome-binding protein (NCBI ptt file) 90, 201
BC5397 BC5397 hypothetical Membrane Spanning Protein (NCBI ptt file) 90, 170
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC2828
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend