Organism : Bacillus cereus ATCC14579 | Module List :
BC3484

Oligoendopeptidase F (NCBI ptt file)

CircVis
Functional Annotations (5)
Function System
Oligoendopeptidase F cog/ cog
metalloendopeptidase activity go/ molecular_function
proteolysis go/ biological_process
zinc ion binding go/ molecular_function
pepF tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC3484
(Mouseover regulator name to see its description)

BC3484 is regulated by 17 influences and regulates 0 modules.
Regulators for BC3484 (17)
Regulator Module Operator
BC0586 439 tf
BC0613 439 tf
BC1302 439 tf
BC1489 439 tf
BC1531 439 tf
BC2794 439 tf
BC3072 439 tf
BC0123 286 tf
BC0758 286 tf
BC1449 286 tf
BC1996 286 tf
BC2794 286 tf
BC3072 286 tf
BC3668 286 tf
BC4001 286 tf
BC5265 286 tf
BC5352 286 tf

Warning: BC3484 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4488 1.20e+00 aAGGAgatGa
Loader icon
4489 1.90e+04 ggGaAtAGGga
Loader icon
4788 9.70e+03 CTaGGTCTTAAGTCTGAG
Loader icon
4789 1.90e-01 TTtccTCTTtc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC3484

BC3484 is enriched for 5 functions in 3 categories.
Enrichment Table (5)
Function System
Oligoendopeptidase F cog/ cog
metalloendopeptidase activity go/ molecular_function
proteolysis go/ biological_process
zinc ion binding go/ molecular_function
pepF tigr/ tigrfam
Module neighborhood information for BC3484

BC3484 has total of 48 gene neighbors in modules 286, 439
Gene neighbors (48)
Gene Common Name Description Module membership
BC0071 BC0071 Hypoxanthine-guanine phosphoribosyltransferase (NCBI ptt file) 273, 439
BC0572 BC0572 Two-component response regulator (NCBI ptt file) 63, 286
BC0758 BC0758 Transcriptional regulator, MarR family (NCBI ptt file) 47, 286
BC0761 BC0761 ABC transporter permease protein (NCBI ptt file) 286, 427
BC0762 BC0762 hypothetical protein (NCBI ptt file) 286, 427
BC0763 BC0763 ABC transporter permease protein (NCBI ptt file) 286, 427
BC0804 BC0804 Quinolone resistence NorA protein (NCBI ptt file) 268, 439
BC1097 BC1097 hypothetical protein (NCBI ptt file) 63, 286
BC1098 BC1098 hypothetical protein (NCBI ptt file) 286, 427
BC1099 BC1099 hypothetical protein (NCBI ptt file) 26, 286
BC1135 BC1135 Alkaline phosphatase like protein (NCBI ptt file) 268, 439
BC1136 BC1136 Signal peptidase I (NCBI ptt file) 439, 491
BC1269 BC1269 hypothetical protein (NCBI ptt file) 286, 427
BC1275 BC1275 Methyltransferase (NCBI ptt file) 47, 286
BC1302 BC1302 Transcriptional regulator, GntR family (NCBI ptt file) 439, 455
BC1435 BC1435 hypothetical protein (NCBI ptt file) 98, 439
BC1436 BC1436 Phage shock protein A (NCBI ptt file) 98, 439
BC1484 BC1484 ATP-dependent DNA helicase recQ (NCBI ptt file) 286, 409
BC1490 BC1490 genetic competence negative regulator mecA (NCBI ptt file) 268, 439
BC1519 BC1519 TPR-repeat-containing protein (NCBI ptt file) 286, 306
BC1531 BC1531 hypothetical Transcriptional Regulatory Protein (NCBI ptt file) 439, 450
BC1588 BC1588 Secreted polysaccharide polymerase (NCBI ptt file) 286, 427
BC1619 BC1619 Oxygen-insensitive NADPH nitroreductase (NCBI ptt file) 439, 483
BC2188 BC2188 hypothetical protein (NCBI ptt file) 427, 439
BC2389 BC2389 Tellurite resistance protein (NCBI ptt file) 98, 439
BC2390 BC2390 hypothetical protein (NCBI ptt file) 98, 439
BC2405 BC2405 hypothetical protein (NCBI ptt file) 268, 439
BC2407 BC2407 hypothetical protein (NCBI ptt file) 286, 453
BC2556 BC2556 DNA integration/recombination/invertion protein (NCBI ptt file) 286, 511
BC3026 BC3026 Tetracycline resistance protein tetP (NCBI ptt file) 286, 511
BC3107 BC3107 UvrC-like protein (NCBI ptt file) 286, 491
BC3484 BC3484 Oligoendopeptidase F (NCBI ptt file) 286, 439
BC3624 BC3624 None 208, 439
BC3727 BC3727 Formate transporter (NCBI ptt file) 47, 286
BC3747 BC3747 Sensory box/GGDEF family protein (NCBI ptt file) 63, 286
BC4099 BC4099 hypothetical protein (NCBI ptt file) 233, 286
BC4258 BC4258 Hydroxyacylglutathione hydrolase (NCBI ptt file) 302, 439
BC4340 BC4340 NAD(P)H nitroreductase (NCBI ptt file) 47, 286
BC4608 BC4608 phosphoesterase, DHH family protein (NCBI ptt file) 268, 439
BC4674 BC4674 Chorismate mutase (NCBI ptt file) 286, 288
BC4729 BC4729 hypothetical protein (NCBI ptt file) 286, 427
BC4730 BC4730 Homoserine O-acetyltransferase (NCBI ptt file) 286, 398
BC4752 BC4752 hypothetical protein (NCBI ptt file) 122, 439
BC4753 BC4753 Lysophospholipase L2 (NCBI ptt file) 98, 439
BC4775 BC4775 Phosphoglycerol transferase (NCBI ptt file) 439, 505
BC5233 BC5233 D-alanine aminotransferase (NCBI ptt file) 233, 286
BC5400 BC5400 Bacitracin transport ATP-binding protein bcrA (NCBI ptt file) 237, 286
BC5441 BC5441 Autolysin sensor kinase (NCBI ptt file) 286, 414
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC3484
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend