Organism : Bacillus cereus ATCC14579 | Module List :
BC4965

hypothetical Cytosolic Protein (NCBI ptt file)

CircVis
Functional Annotations (1)
Function System
RNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC4965
(Mouseover regulator name to see its description)

BC4965 is regulated by 28 influences and regulates 0 modules.
Regulators for BC4965 (28)
Regulator Module Operator
BC0047 285 tf
BC0059 285 tf
BC0116 285 tf
BC0657 285 tf
BC1075 285 tf
BC1077 285 tf
BC1113 285 tf
BC1387 285 tf
BC1710 285 tf
BC2362 285 tf
BC3493 285 tf
BC4029 285 tf
BC4356 285 tf
BC4525 285 tf
BC4581 285 tf
BC4834 285 tf
BC5340 285 tf
BC5373 285 tf
BC0059 281 tf
BC0659 281 tf
BC0854 281 tf
BC1715 281 tf
BC1841 281 tf
BC2514 281 tf
BC3155 281 tf
BC3405 281 tf
BC3497 281 tf
BC5222 281 tf

Warning: BC4965 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4478 1.50e-01 aAAAGGagg
Loader icon
4479 1.50e+04 ccGCcGaTTTActcaaCCGCTTcG
Loader icon
4486 2.90e+01 ccCC..cac.agCC
Loader icon
4487 1.30e+03 AGGAgg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC4965

BC4965 is enriched for 1 functions in 2 categories.
Enrichment Table (1)
Function System
RNA binding go/ molecular_function
Module neighborhood information for BC4965

BC4965 has total of 45 gene neighbors in modules 281, 285
Gene neighbors (45)
Gene Common Name Description Module membership
BC0046 BC0046 Dimethyladenosine transferase (NCBI ptt file) 285, 394
BC0048 BC0048 VEG protein (NCBI ptt file) 225, 285
BC0059 BC0059 Stage V sporulation protein T (NCBI ptt file) 281, 517
BC0107 BC0107 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (NCBI ptt file) 285, 394
BC0251 BC0251 hypothetical protein (NCBI ptt file) 281, 434
BC0298 BC0298 Two-component response regulator (NCBI ptt file) 163, 281
BC0454 BC0454 Transporter, Drug/Metabolite Exporter family (NCBI ptt file) 10, 281
BC0496 BC0496 Dihydroorotase (NCBI ptt file) 277, 281
BC0545 BC0545 hypothetical Cytosolic Protein (NCBI ptt file) 285, 476
BC0593 BC0593 Alanine permease (NCBI ptt file) 281, 431
BC0737 BC0737 Inosine-5'-monophosphate dehydrogenase related protein (NCBI ptt file) 281, 293
BC1029 BC1029 IG hypothetical 18063 (NCBI ptt file) 33, 281
BC1143 BC1143 Spore germination protein PC (NCBI ptt file) 281, 351
BC1166 BC1166 hypothetical Exported Protein (NCBI ptt file) 285, 400
BC1364 BC1364 hypothetical protein (NCBI ptt file) 33, 281
BC1559 BC1559 Spore coat protein (NCBI ptt file) 281, 351
BC1736 BC1736 Export ABC transporter permease protein (NCBI ptt file) 209, 281
BC2236 BC2236 None 96, 281
BC2374 BC2374 hypothetical Membrane Spanning Protein (NCBI ptt file) 257, 281
BC2387 BC2387 hypothetical protein (NCBI ptt file) 31, 281
BC2540 BC2540 hypothetical protein (NCBI ptt file) 285, 430
BC3087 BC3087 Phosphoenolpyruvate synthase (NCBI ptt file) 281, 351
BC3407 BC3407 Cyclopropane-fatty-acyl-phospholipid synthase (NCBI ptt file) 228, 285
BC3645 BC3645 CcdC protein (NCBI ptt file) 63, 285
BC3897 BC3897 RNA binding protein (NCBI ptt file) 263, 281
BC4440 BC4440 Stage IV sporulation protein FB (NCBI ptt file) 252, 285
BC4568 BC4568 Multidrug resistance protein B (NCBI ptt file) 285, 394
BC4569 BC4569 Multidrug resistance protein A (NCBI ptt file) 179, 285
BC4577 BC4577 hypothetical protein (NCBI ptt file) 281, 351
BC4671 BC4671 hypothetical protein (NCBI ptt file) 285, 430
BC4759 BC4759 hypothetical Membrane Spanning Protein (NCBI ptt file) 141, 281
BC4953 BC4953 hypothetical protein (NCBI ptt file) 285, 337
BC4955 BC4955 Low temperature requirement C protein (NCBI ptt file) 281, 303
BC4965 BC4965 hypothetical Cytosolic Protein (NCBI ptt file) 281, 285
BC5067 BC5067 CrcB family protein (NCBI ptt file) 285, 394
BC5068 BC5068 CrcB family protein (NCBI ptt file) 63, 285
BC5069 BC5069 hypothetical protein (NCBI ptt file) 245, 281
BC5073 BC5073 Spermidine N1-acetyltransferase (NCBI ptt file) 31, 281
BC5178 BC5178 Pristinamycin resistance protein VgaB (NCBI ptt file) 56, 281
BC5204 BC5204 Peptidoglycan N-acetylglucosamine deacetylase (NCBI ptt file) 281, 351
BC5221 BC5221 Phage infection protein (NCBI ptt file) 281, 351
BC5328 BC5328 Methyltransferase (NCBI ptt file) 285, 430
BC5375 BC5375 Multimodular transpeptidase-transglycosylase PBP 2D (NCBI ptt file) 285, 311
BC5408 BC5408 2-haloalkanoic acid dehalogenase (NCBI ptt file) 281, 430
BC5478 BC5478 hypothetical Cytosolic Protein (NCBI ptt file) 281, 443
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC4965
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend