Organism : Bacillus cereus ATCC14579 | Module List :
BC5039

hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC5039
(Mouseover regulator name to see its description)

BC5039 is regulated by 23 influences and regulates 0 modules.
Regulators for BC5039 (23)
Regulator Module Operator
BC0801 486 tf
BC1059 486 tf
BC1329 486 tf
BC2469 486 tf
BC2517 486 tf
BC2964 486 tf
BC2988 486 tf
BC3587 486 tf
BC3588 486 tf
BC3592 486 tf
BC3904 486 tf
BC5251 486 tf
BC5282 486 tf
BC0648 144 tf
BC1059 144 tf
BC1851 144 tf
BC2401 144 tf
BC2469 144 tf
BC2517 144 tf
BC2964 144 tf
BC3587 144 tf
BC3904 144 tf
BC4001 144 tf

Warning: BC5039 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4204 2.20e+02 aCTAcAcccacaAc
Loader icon
4205 5.10e+02 gAgGggG
Loader icon
4882 2.80e+01 Ac.aAAAGGAG
Loader icon
4883 1.50e+04 C.TCATCTgC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC5039

Warning: No Functional annotations were found!

Module neighborhood information for BC5039

BC5039 has total of 26 gene neighbors in modules 144, 486
Gene neighbors (26)
Gene Common Name Description Module membership
BC0844 BC0844 hypothetical Membrane Spanning Protein (NCBI ptt file) 486, 517
BC0860 BC0860 Multidrug resistance protein B (NCBI ptt file) 144, 489
BC0935 BC0935 Citrate-proton symporter (NCBI ptt file) 144, 508
BC1310 BC1310 Potassium uptake protein KtrB (NCBI ptt file) 174, 486
BC1865 BC1865 Phage protein (NCBI ptt file) 144, 515
BC1866 BC1866 Phage protein (NCBI ptt file) 144, 448
BC1867 BC1867 Phage protein (NCBI ptt file) 144, 515
BC1896 BC1896 Phage protein (NCBI ptt file) 144, 437
BC1897 BC1897 Phage protein (NCBI ptt file) 144, 344
BC1898 BC1898 Phage protein (NCBI ptt file) 144, 437
BC1899 BC1899 Phage protein (NCBI ptt file) 144, 309
BC1903 BC1903 Phage protein (NCBI ptt file) 140, 144
BC1904 BC1904 Phage protein (NCBI ptt file) 140, 144
BC1910 BC1910 holin (NCBI ptt file) 144, 205
BC2492 BC2492 hypothetical protein (NCBI ptt file) 448, 486
BC2783 BC2783 hypothetical protein (NCBI ptt file) 16, 486
BC2792 BC2792 Glycine betaine-binding protein (NCBI ptt file) 317, 486
BC2865 BC2865 hypothetical Exported Protein (NCBI ptt file) 486, 521
BC2893 BC2893 hypothetical protein (NCBI ptt file) 291, 486
BC3010 BC3010 Microbial collagenase (NCBI ptt file) 144, 309
BC3019 BC3019 hypothetical protein (NCBI ptt file) 362, 486
BC3320 BC3320 Transcriptional regulator, MarR family (NCBI ptt file) 486, 498
BC4095 BC4095 hypothetical protein (NCBI ptt file) 35, 486
BC4355 BC4355 hypothetical Membrane Spanning Protein (NCBI ptt file) 486, 509
BC4417 BC4417 BofC protein (NCBI ptt file) 102, 486
BC5039 BC5039 hypothetical protein (NCBI ptt file) 144, 486
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC5039
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend