Organism : Clostridium acetobutylicum | Module List :
CAC0888

Phosphoglycerol transferase MdoB related protein, alkaline phosphatase superfamily (NCBI ptt file)

CircVis
Functional Annotations (3)
Function System
Phosphoglycerol transferase and related proteins, alkaline phosphatase superfamily cog/ cog
metabolic process go/ biological_process
sulfuric ester hydrolase activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC0888
(Mouseover regulator name to see its description)

CAC0888 is regulated by 26 influences and regulates 0 modules.
Regulators for CAC0888 (26)
Regulator Module Operator
CAC0144 194 tf
CAC0155 194 tf
CAC0265 194 tf
CAC0284 194 tf
CAC0422 194 tf
CAC1670 194 tf
CAC1753 194 tf
CAC1786 194 tf
CAC2053 194 tf
CAC2074 194 tf
CAC2950 194 tf
CAC3037 194 tf
CAC3216 194 tf
CAC3502 194 tf
CAC0081 352 tf
CAC0949 352 tf
CAC0977 352 tf
CAC1355 352 tf
CAC1670 352 tf
CAC1799 352 tf
CAC1900 352 tf
CAC2084 352 tf
CAC2236 352 tf
CAC2568 352 tf
CAC3200 352 tf
CAC3475 352 tf

Warning: CAC0888 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7040 1.50e+01 ggaGGTG
Loader icon
7041 5.60e+03 GGCtGA
Loader icon
7356 2.40e+04 GTGTGC
Loader icon
7357 2.50e+02 CTGCcCA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC0888

CAC0888 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Phosphoglycerol transferase and related proteins, alkaline phosphatase superfamily cog/ cog
metabolic process go/ biological_process
sulfuric ester hydrolase activity go/ molecular_function
Module neighborhood information for CAC0888

CAC0888 has total of 30 gene neighbors in modules 194, 352
Gene neighbors (30)
Gene Common Name Description Module membership
CAC0437 CAC0437 Sensory transduction histidine kinase (NCBI ptt file) 53, 352
CAC0651 CAC0651 Hypothetical protein (NCBI ptt file) 292, 352
CAC0888 CAC0888 Phosphoglycerol transferase MdoB related protein, alkaline phosphatase superfamily (NCBI ptt file) 194, 352
CAC0949 CAC0949 Predicted transcriptional regulator (NCBI ptt file) 29, 352
CAC0993 dacF D-alanyl-D-alanine carboxypeptidase (penicilin binding protein) (NCBI ptt file) 201, 352
CAC1285 CAC1285 Uncharacterized conserved protein, ortholog of YQEU B.subtilis (NCBI ptt file) 201, 352
CAC1286 CAC1286 Fe-S oxidoreductases (NCBI ptt file) 29, 352
CAC1489 CAC1489 Protein of phosphatidic acid phosphatase family, YNBD E.coli ortholog (NCBI ptt file) 286, 352
CAC1710 CAC1710 Fe-S oxidoreductase, related to NifB/MoaA family with PDZ N-terminal domain (NCBI ptt file) 350, 352
CAC1738 kdtB Phosphopantetheine adenylyltransferase (NCBI ptt file) 194, 319
CAC1739 CAC1739 Uncharacterized conserved protein (coiled-coil) (NCBI ptt file) 194, 319
CAC1746 plsX Fatty acid/phospholipid biosynthesis enzyme (NCBI ptt file) 194, 231
CAC1760 CAC1760 Signal peptidase I (NCBI ptt file) 106, 194
CAC1792 cdsA CDP-diglyceride synthetase (NCBI ptt file) 282, 352
CAC1807 rpsO Ribosomal Protein S15 (NCBI ptt file) 201, 352
CAC2115 lspA Lipoprotein signal peptidase (NCBI ptt file) 51, 352
CAC2270 CAC2270 Hypothetical protein (NCBI ptt file) 38, 352
CAC2285 ruvA Holliday junction specific DNA helicase, subunit ruvA (NCBI ptt file) 25, 352
CAC2286 CAC2286 Uncharacterized protein, similar to protein from Clostridium histolyticum (GI:3892648) (NCBI ptt file) 292, 352
CAC2326 CAC2326 Diverged glycosyltransferase domain containing protein (NCBI ptt file) 194, 198
CAC2327 CAC2327 Glycosyltransferase domain containing protein (NCBI ptt file) 194, 198
CAC2329 CAC2329 Polysaccharide ABC transporter, permease component (NCBI ptt file) 194, 198
CAC2330 CAC2330 Sugar transferase involved in lipopolysaccharide synthesis (NCBI ptt file) 194, 198
CAC2370 CAC2370 Uncharacterized protein, YrfI family (NCBI ptt file) 106, 194
CAC2371 CAC2371 S-adenosylmethionine-dependent methyltransferase (NCBI ptt file) 106, 194
CAC2642 CAC2642 Predicted endonuclease (NCBI ptt file) 159, 352
CAC2672 CAC2672 Predicted membrane protein (NCBI ptt file) 5, 352
CAC3736 spoIIIJ Inner membrane protein, SpoIIIJ (NCBI ptt file) 194, 198
CAC3737 CAC3737 Uncharacterized conserved protein, YidD family (NCBI ptt file) 194, 198
CAC3738 rnpA RnpA, ribonuclease P protein component (NCBI ptt file) 194, 198
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC0888
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend