Organism : Clostridium acetobutylicum | Module List :
CAC1295

ERA GTPase (NCBI ptt file)

CircVis
Functional Annotations (9)
Function System
GTPase cog/ cog
RNA binding go/ molecular_function
GTP binding go/ molecular_function
intracellular go/ cellular_component
Gram-negative-bacterium-type cell wall go/ cellular_component
ferrous iron transmembrane transporter activity go/ molecular_function
ferrous iron transport go/ biological_process
integral to membrane go/ cellular_component
small_GTP tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC1295
(Mouseover regulator name to see its description)

CAC1295 is regulated by 22 influences and regulates 0 modules.
Regulators for CAC1295 (22)
Regulator Module Operator
CAC0461 84 tf
CAC0856 84 tf
CAC0933 84 tf
CAC1032 84 tf
CAC1086 84 tf
CAC1753 84 tf
CAC1786 84 tf
CAC1799 84 tf
CAC2084 84 tf
CAC2842 84 tf
CAC3143 84 tf
CAC3149 84 tf
CAC3192 84 tf
CAC0493 64 tf
CAC0514 64 tf
CAC0929 64 tf
CAC1404 64 tf
CAC2052 64 tf
CAC2473 64 tf
CAC2851 64 tf
CAC2934 64 tf
CAC3166 64 tf

Warning: CAC1295 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6782 2.30e-03 AGGaGG
Loader icon
6783 1.20e+04 GCaGcCc
Loader icon
6822 8.60e-03 AGGAaG
Loader icon
6823 1.10e+04 GCacGAGG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC1295

CAC1295 is enriched for 9 functions in 3 categories.
Enrichment Table (9)
Function System
GTPase cog/ cog
RNA binding go/ molecular_function
GTP binding go/ molecular_function
intracellular go/ cellular_component
Gram-negative-bacterium-type cell wall go/ cellular_component
ferrous iron transmembrane transporter activity go/ molecular_function
ferrous iron transport go/ biological_process
integral to membrane go/ cellular_component
small_GTP tigr/ tigrfam
Module neighborhood information for CAC1295

CAC1295 has total of 54 gene neighbors in modules 64, 84
Gene neighbors (54)
Gene Common Name Description Module membership
CAC0005 CAC0005 Uncharacterized small conserved protein, ortholog of YAAB B.subtilis (NCBI ptt file) 64, 298
CAC0006 gyrB DNA gyrase (topoisomerase II) B subunit (NCBI ptt file) 57, 64
CAC0027 pyrE Orotate phosphoribosyltranspherase (NCBI ptt file) 84, 254
CAC0158 glmS Glucoseamine-fructose-6-phosphate aminotransferase (gene glmS) (NCBI ptt file) 36, 84
CAC0296 csfB Zn-finger containing protein, csfB B.subtilis homolog (NCBI ptt file) 64, 154
CAC0493 CAC0493 Uncharcterized small conserved protein, YhhG family (NCBI ptt file) 64, 232
CAC0514 CAC0514 CBS domain, similar to B.subtilis ytoI (NCBI ptt file) 64, 272
CAC0531 CAC0531 Transcriptional regulator, RpiR family (NCBI ptt file) 41, 64
CAC0637 tyrS Tyrosyl-tRNA synthetase (NCBI ptt file) 10, 64
CAC0672 CAC0672 Fision threonyl-tRNA synthetase (N-terminal part) and uridine kinase (NCBI ptt file) 64, 273
CAC0673 CAC0673 L-serine dehydratase, beta chain (NCBI ptt file) 64, 273
CAC0883 CAC0883 Probable cation efflux pump (multidrug resistance protein) (NCBI ptt file) 84, 254
CAC0904 CAC0904 ATPase with chaperon activity, two ATP-binding domains, ClpC orthologs (NCBI ptt file) 64, 298
CAC0944 tkt Transketolase (NCBI ptt file) 84, 292
CAC1255 CAC1255 Uncharacterized conserved protein (NCBI ptt file) 84, 254
CAC1256 CAC1256 Ribonucleases G/E family protein (NCBI ptt file) 84, 258
CAC1278 lepA Membrane GTPase lepA (NCBI ptt file) 84, 254
CAC1295 CAC1295 ERA GTPase (NCBI ptt file) 64, 84
CAC1302 CAC1302 Predicted SAM-dependent methyltransferase (NCBI ptt file) 10, 64
CAC1404 CAC1404 Transcriptional regulator of sugar metabolism (deoR family) (NCBI ptt file) 64, 109
CAC1416 CAC1416 Predicted acetyltransferase (NCBI ptt file) 64, 298
CAC1622 CAC1622 Pyridoxal kinase related protein (NCBI ptt file) 64, 261
CAC1624 CAC1624 Uncharacterized protein from DegV (B.subtilis) family (NCBI ptt file) 64, 298
CAC1679 CAC1679 Hypothetical protein (NCBI ptt file) 64, 128
CAC1712 gpsA Glycerol 3-phosphate dehydrogenase (NCBI ptt file) 84, 350
CAC1796 CAC1796 Predicted membrane-associated Zn-dependent protease (NCBI ptt file) 64, 91
CAC1849 CAC1849 Predicted flavoprotein, YhiN family (NCBI ptt file) 64, 272
CAC1850 CAC1850 Transcriptional regulators, RpiR family (NCBI ptt file) 64, 211
CAC1851 CAC1851 Predicted pseudouridylate synthase (NCBI ptt file) 64, 211
CAC1857 CAC1857 Predicted metal-dependent peptidase (NCBI ptt file) 57, 64
CAC1858 CAC1858 MoxR-like ATPase (NCBI ptt file) 64, 106
CAC1859 CAC1859 Hypothetical protein (NCBI ptt file) 57, 64
CAC2052 CAC2052 DNA-dependent RNA polymerase sigma subunit (NCBI ptt file) 41, 64
CAC2053 CAC2053 Hypothetical protein (NCBI ptt file) 41, 64
CAC2063 dacF D-alanyl-D-alanine carboxypeptidase (NCBI ptt file) 57, 64
CAC2083 folD Tetrahydrofolate dehydrogenase/cyclohydrolase, FolD (NCBI ptt file) 84, 310
CAC2085 CAC2085 Uncharacterized protein from alkaline shock protein family, YQHY B.subtilis ortholog (NCBI ptt file) 64, 273
CAC2317 tagA Teichoic acid biosynthesis protein, tagA (NCBI ptt file) 84, 211
CAC2358 CAC2358 RRNA methylase, YSGA B.subtilis ortholog (NCBI ptt file) 84, 353
CAC2373 CAC2373 Predicted membrane protein (NCBI ptt file) 76, 84
CAC2401 CAC2401 Activator of 2-hydroxyglutaryl-CoA dehydratase (duplicated HSP70 class ATPase domain) fused to uncharacterized conserved protein (NCBI ptt file) 28, 84
CAC2665 CAC2665 Xanthosine triphosphate pyrophosphatase, HAM1-like protein (NCBI ptt file) 64, 281
CAC2677 CAC2677 Lytic murein transglycosylase (NCBI ptt file) 64, 298
CAC2740 hisS Histidyl-tRNA synthetase (NCBI ptt file) 84, 324
CAC2850 CAC2850 Proline/glycine betaine ABC-type transport system, ATPase component (NCBI ptt file) 8, 84
CAC2894 CAC2894 Uncharacterized protein, ywiB B.subtilis homolog (NCBI ptt file) 84, 310
CAC2948 CAC2948 ATPase components of ABC transporter with duplicated ATPase domains (second domain is inactivated) (NCBI ptt file) 79, 84
CAC2983 CAC2983 Hypothetical protein (NCBI ptt file) 84, 350
CAC3010 CAC3010 ATP-dependent RNA helicase (superfamily II), YDBR B.subtilis ortholog (NCBI ptt file) 84, 106
CAC3012 CAC3012 ATPase component of ABC transporter, with duplicated ATPase domains (NCBI ptt file) 44, 84
CAC3100 CAC3100 Predicted permease (Cobalt permease subfamily) (NCBI ptt file) 84, 106
CAC3156 CAC3156 Uncharacterized conserved protein, YACZ B.subtilis ortholog (NCBI ptt file) 84, 324
CAC3281 CAC3281 ABC-type multidrug/protein/lipid transport system, ATPase component (NCBI ptt file) 84, 324
CAC3721 CAC3721 Hypothetical secreted protein (NCBI ptt file) 84, 324
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC1295
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend