Organism : Clostridium acetobutylicum | Module List :
CAC1560

Hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (1)
Function System
DNA binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC1560
(Mouseover regulator name to see its description)

CAC1560 is regulated by 28 influences and regulates 0 modules.
Regulators for CAC1560 (28)
Regulator Module Operator
CAC0265 48 tf
CAC0289 48 tf
CAC0461 48 tf
CAC1467 48 tf
CAC2306 48 tf
CAC2773 48 tf
CAC3046 48 tf
CAC3424 48 tf
CAC3649 48 tf
CAC3731 48 tf
CAC0183 242 tf
CAC0189 242 tf
CAC0465 242 tf
CAC0707 242 tf
CAC0832 242 tf
CAC0841 242 tf
CAC1355 242 tf
CAC1481 242 tf
CAC1588 242 tf
CAC1689 242 tf
CAC1786 242 tf
CAC2297 242 tf
CAC2818 242 tf
CAC2950 242 tf
CAC3046 242 tf
CAC3166 242 tf
CAC3267 242 tf
CAC3649 242 tf

Warning: CAC1560 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6750 8.20e-02 ga.AAgGGaG
Loader icon
6751 1.10e+03 ccTtCGcC
Loader icon
7136 1.30e-05 .AagGGaGG
Loader icon
7137 1.10e+03 CacTAgtTT.tAcaatAaatc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC1560

CAC1560 is enriched for 1 functions in 2 categories.
Enrichment Table (1)
Function System
DNA binding go/ molecular_function
Module neighborhood information for CAC1560

CAC1560 has total of 31 gene neighbors in modules 48, 242
Gene neighbors (31)
Gene Common Name Description Module membership
CAC0049 CAC0049 Hypothetical protein, CF-17 family (NCBI ptt file) 242, 264
CAC0403 CAC0403 Secreted protein contains fibronectin type III domains (NCBI ptt file) 94, 242
CAC0404 CAC0404 Serine/threonine protein kinase fused to TPR repeats domain (NCBI ptt file) 242, 264
CAC0405 CAC0405 Hypothetical protein (NCBI ptt file) 242, 264
CAC0406 CAC0406 Predicted membrane protein, containing FHA domain (NCBI ptt file) 242, 264
CAC0411 CAC0411 Uncharacterized small conserved protein, homolog of YUKE/YFJA (NCBI ptt file) 242, 264
CAC0412 CAC0412 TPR-repeat-containing protein (NCBI ptt file) 242, 264
CAC0413 CAC0413 Uncharacterized small conserved protein, homolog of YUKE/YFJA (NCBI ptt file) 242, 251
CAC0432 CAC0432 Methyl-accepting chemotaxis protein (NCBI ptt file) 48, 319
CAC0462 CAC0462 Protein of short-chain alcohol dehydrogenase family (NCBI ptt file) 48, 224
CAC0518 pykA Pyruvate kinase (pykA) (NCBI ptt file) 191, 242
CAC0870 CAC0870 Hypothetical protein (NCBI ptt file) 242, 322
CAC1410 CAC1410 Uncharacterized protein with repeats, similar to YCEG B.subtilis (NCBI ptt file) 34, 48
CAC1411 CAC1411 Similar to toxic anion resistance protein terA, ortholog of YCEH B.subtilis (NCBI ptt file) 48, 126
CAC1412 cdrC Methyl methane sulfonate/mytomycin C/UV resistance protein, GSP18 (YCEE) B.subtilis ortholog, TerE family protein (NCBI ptt file) 34, 48
CAC1413 CAC1413 Similar to C-terminal fragment of toxic anion resistance protein terA (NCBI ptt file) 48, 126
CAC1560 CAC1560 Hypothetical protein (NCBI ptt file) 48, 242
CAC1561 CAC1561 Glycosyltransferases, involved in cell wall biogenesis (NCBI ptt file) 242, 323
CAC1562 CAC1562 Predicted membrane protein (NCBI ptt file) 242, 323
CAC1563 CAC1563 Endoglucanase (fragment) (NCBI ptt file) 242, 323
CAC2456 CAC2456 Hypothetical protein, CF-40 family (NCBI ptt file) 242, 264
CAC2457 CAC2457 Hypothetical protein (NCBI ptt file) 242, 264
CAC2490 CAC2490 Xre family DNA-binding domain and TPR repeats containing protein (NCBI ptt file) 48, 319
CAC3042 CAC3042 O-actetyl transferase related protein (NCBI ptt file) 48, 319
CAC3043 CAC3043 CPSC/CAPB subfamily ATPase (NCBI ptt file) 48, 319
CAC3044 CAC3044 CPSD/CAPA conserved membrane protein of Rol/Cld family (NCBI ptt file) 9, 48
CAC3055 CAC3055 Sugar kinase (NCBI ptt file) 48, 323
CAC3059 CAC3059 Sugar transferases (NCBI ptt file) 9, 48
CAC3388 CAC3388 Methyl-accepting chemotaxis protein (NCBI ptt file) 48, 96
CAC3459 CAC3459 Homolog of cell division GTPase FtsZ, diverged (NCBI ptt file) 9, 242
CAC3461 CAC3461 Hypothetical protein (NCBI ptt file) 156, 242
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC1560
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend