Organism : Clostridium acetobutylicum | Module List :
CAC2127 mraY

Phospho-N-acetylmuramoyl-pentapeptide transferase, MraY (NCBI ptt file)

CircVis
Functional Annotations (5)
Function System
UDP-N-acetylmuramyl pentapeptide phosphotransferase/UDP-N-acetylglucosamine-1-phosphate transferase cog/ cog
phospho-N-acetylmuramoyl-pentapeptide-transferase activity go/ molecular_function
peptidoglycan biosynthetic process go/ biological_process
integral to membrane go/ cellular_component
mraY tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for CAC2127
(Mouseover regulator name to see its description)

CAC2127 is regulated by 28 influences and regulates 0 modules.
Regulators for CAC2127 mraY (28)
Regulator Module Operator
CAC0032 277 tf
CAC0255 277 tf
CAC0422 277 tf
CAC0569 277 tf
CAC0863 277 tf
CAC1668 277 tf
CAC1698 277 tf
CAC1915 277 tf
CAC2071 277 tf
CAC2306 277 tf
CAC2768 277 tf
CAC3360 277 tf
CAC3443 277 tf
CAC3646 277 tf
CAC0113 2 tf
CAC0144 2 tf
CAC0255 2 tf
CAC0426 2 tf
CAC0977 2 tf
CAC1226 2 tf
CAC1719 2 tf
CAC1786 2 tf
CAC1799 2 tf
CAC2074 2 tf
CAC2889 2 tf
CAC3063 2 tf
CAC3149 2 tf
CAC3475 2 tf

Warning: CAC2127 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
6658 2.40e-01 aTcCcTcC
Loader icon
6659 3.80e+03 atAaAAActTCcat
Loader icon
7206 1.50e+00 AaggGTGc
Loader icon
7207 3.00e+03 AActgccgG.caCtcac.AgAaAC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for CAC2127

CAC2127 is enriched for 5 functions in 3 categories.
Module neighborhood information for CAC2127

CAC2127 has total of 38 gene neighbors in modules 2, 277
Gene neighbors (38)
Gene Common Name Description Module membership
CAC0569 sacT SACPA operon antiterminator (sacT) (NCBI ptt file) 149, 277
CAC0606 CAC0606 C-terminal region cation efflux system protein CZCD (NCBI ptt file) 52, 277
CAC0632 CAC0632 Predicted phosphatase (NCBI ptt file) 52, 277
CAC0687 cysE Serine acetyltransferase (NCBI ptt file) 196, 277
CAC0884 CAC0884 CAMP-binding domain (catabolite gene activator) and regulatory subunit of cAMP-dependent protein kinase (NCBI ptt file) 2, 35
CAC0902 CAC0902 Predicted membrane protein (NCBI ptt file) 134, 277
CAC0903 CAC0903 Sensory transduction histidine kinase (NCBI ptt file) 134, 277
CAC0983 CAC0983 Hypothetical protein (NCBI ptt file) 52, 277
CAC1023 nadC Nicotinate-nucleotide pyrophosphorylase (NCBI ptt file) 277, 280
CAC1096 CAC1096 Uncharacterized protein, YjiN homolog (NCBI ptt file) 277, 348
CAC1243 mreC Shape-determining protein mreC (NCBI ptt file) 2, 315
CAC1244 CAC1244 Predicted membrane protein (NCBI ptt file) 2, 35
CAC1245 pbpA Penicillin-binding protein 2 (NCBI ptt file) 2, 5
CAC1263 CAC1263 HD superfamily hydrolase, yqeK B.subtilis ortholog (NCBI ptt file) 248, 277
CAC1437 CAC1437 Diverged AAA-family ATPase containing protein (NCBI ptt file) 2, 35
CAC1585 CAC1585 MDR-type permease (NCBI ptt file) 2, 35
CAC1628 gyrA DNA gyrase A subunit (NCBI ptt file) 2, 105
CAC1731 CAC1731 Predicted nucleotide-binding protein, YLOS B.subtilis ortholog (NCBI ptt file) 2, 278
CAC1833 CAC1833 Cystathionine beta-lyase family protein, YNBB B.subtilis ortholog (NCBI ptt file) 58, 277
CAC1854 CAC1854 Nudix (MutT) family hydrolase (NCBI ptt file) 209, 277
CAC1909 rnd Ribonuclease D (NCBI ptt file) 225, 277
CAC1910 CAC1910 Predicted membrane protein (NCBI ptt file) 225, 277
CAC2125 divIB Cell division septal protein divIB/FtsQ (NCBI ptt file) 2, 3
CAC2126 spoVE Stage V sporulation protein E, FtsW/MrdB/SpoVE family (NCBI ptt file) 2, 229
CAC2127 mraY Phospho-N-acetylmuramoyl-pentapeptide transferase, MraY (NCBI ptt file) 2, 277
CAC2128 murF UDP-N-acetylmuramyl pentapeptide synthase (NCBI ptt file) 2, 229
CAC2129 murE UDP-N-acetylmuramyl tripeptide synthase, MurE (NCBI ptt file) 2, 283
CAC2134 CAC2134 Predicted GTPase, YYAF B.subtilis ortholog (NCBI ptt file) 2, 35
CAC2138 CAC2138 Exopolyphosphatase (NCBI ptt file) 2, 51
CAC2356 pheT Phenylalanyl-tRNA synthetase (beta subunit) (NCBI ptt file) 2, 35
CAC2357 pheS Phenylalanyl-tRNA synthetase (alpha subunit) (NCBI ptt file) 2, 35
CAC2784 CAC2784 Signal peptidase type IV (NCBI ptt file) 134, 277
CAC2786 CAC2786 Uncharacterized conserved protein, YQGV B.subtilis ortholog (NCBI ptt file) 67, 277
CAC2836 CAC2836 Zn-binding lipoprotein related (surface adhesin A), ADHS (NCBI ptt file) 52, 277
CAC2883 CAC2883 Predicted membrane protein (NCBI ptt file) 2, 229
CAC3292 CAC3292 NifU homolog involved in Fe-S cluster formation (NCBI ptt file) 209, 277
CAC3360 CAC3360 Transcriptional regulator, LysR family (NCBI ptt file) 176, 277
CAC3600 dapA Dihydrodipicolinate synthase (NCBI ptt file) 176, 277
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for CAC2127
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend