Organism : Campylobacter jejuni | Module List :
Cj0603c dsbD

putative thiol:disulfide interchange protein (NCBI ptt file)

CircVis
Functional Annotations (8)
Function System
Thiol:disulfide interchange protein cog/ cog
glycerol ether metabolic process go/ biological_process
electron carrier activity go/ molecular_function
protein disulfide oxidoreductase activity go/ molecular_function
membrane go/ cellular_component
cytochrome complex assembly go/ biological_process
cell redox homeostasis go/ biological_process
protein-disulfide reductase activity go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for Cj0603c
(Mouseover regulator name to see its description)

Cj0603c is regulated by 4 influences and regulates 0 modules.
Regulators for Cj0603c dsbD (4)
Regulator Module Operator
Cj0394c 15 tf
Cj0400 15 tf
Cj0480c 15 tf
Cj0670 15 tf

Warning: Cj0603c Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7412 4.40e+02 cCAAaagtG.AAGC
Loader icon
7413 5.90e+03 CCTTGAGATTTAAGGAAC
Loader icon
7464 8.10e+02 gcCtTTGGAag
Loader icon
7465 2.60e+03 gCgGTtgtTcc
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for Cj0603c

Cj0603c is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Thiol:disulfide interchange protein cog/ cog
glycerol ether metabolic process go/ biological_process
electron carrier activity go/ molecular_function
protein disulfide oxidoreductase activity go/ molecular_function
membrane go/ cellular_component
cytochrome complex assembly go/ biological_process
cell redox homeostasis go/ biological_process
protein-disulfide reductase activity go/ molecular_function
Module neighborhood information for Cj0603c

Cj0603c has total of 42 gene neighbors in modules 15, 41
Gene neighbors (42)
Gene Common Name Description Module membership
Cj0024 nrdA ribonucleoside-diphosphate reductase alpha chain (NCBI ptt file) 41, 62
Cj0160c Cj0160c hypothetical protein Cj0160c (NCBI ptt file) 41, 149
Cj0163c Cj0163c hypothetical protein Cj0163c (NCBI ptt file) 38, 41
Cj0304c bioC putative biotin synthesis protein (NCBI ptt file) 41, 79
Cj0323 Cj0323 hypothetical protein Cj0323 (NCBI ptt file) 15, 71
Cj0325 xseA exodeoxyribonuclease VII large subunit (NCBI ptt file) 41, 122
Cj0326 serC phosphoserine aminotransferase (NCBI ptt file) 41, 138
Cj0422c Cj0422c putative H-T-H containing protein (NCBI ptt file) 15, 152
Cj0447 Cj0447 hypothetical protein Cj0447 (NCBI ptt file) 41, 47
Cj0510c Cj0510c hypothetical protein Cj0510c (NCBI ptt file) 41, 129
Cj0563 Cj0563 hypothetical protein Cj0563 (NCBI ptt file) 15, 152
Cj0580c Cj0580c putative oxidoreductase (NCBI ptt file) 15, 69
Cj0584 Cj0584 hypothetical protein Cj0584 (NCBI ptt file) 15, 152
Cj0603c dsbD putative thiol:disulfide interchange protein (NCBI ptt file) 15, 41
Cj0660c Cj0660c putative transmembrane protein (NCBI ptt file) 15, 129
Cj0693c Cj0693c hypothetical protein Cj0693c (NCBI ptt file) 15, 62
Cj0728 Cj0728 putative periplasmic protein (NCBI ptt file) 15, 152
Cj0733 Cj0733 hypothetical protein Cj0733 (NCBI ptt file) 15, 37
Cj0736 Cj0736 hypothetical protein Cj0736 (NCBI ptt file) 15, 41
Cj0789 Cj0789 putative RNA nucleotidyltransferase (NCBI ptt file) 27, 41
Cj0801 Cj0801 integral membrane protein (MVIN homolog) (NCBI ptt file) 29, 41
Cj0855 folD methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (NCBI ptt file) 41, 61
Cj0895c aroA 3-phosphoshikimate 1-carboxyvinyltransferase (NCBI ptt file) 41, 69
Cj0971 Cj0971 hypothetical protein Cj0971 (NCBI ptt file) 15, 108
Cj1053c Cj1053c putative integral membrane protein (NCBI ptt file) 41, 51
Cj1119c wlaM putative integral membrane protein (NCBI ptt file) 41, 127
Cj1136 Cj1136 putative galactosyltransferase (NCBI ptt file) 15, 101
Cj1165c Cj1165c putative integral membrane protein (NCBI ptt file) 15, 66
Cj1203c Cj1203c putative integral membrane protein (NCBI ptt file) 38, 41
Cj1223c Cj1223c putative two-component regulator (NCBI ptt file) 38, 41
Cj1269c amiA putative N-acetylmuramoyl-L-alanine amidase (NCBI ptt file) 18, 41
Cj1270c Cj1270c hypothetical protein Cj1270c (NCBI ptt file) 41, 83
Cj1362 ruvB holliday junction DNA helicase (NCBI ptt file) 41, 56
Cj1363 amaA acid membrane antigen A (NCBI ptt file) 12, 41
Cj1372 Cj1372 putative periplasmic protein (NCBI ptt file) 41, 88
Cj1399c hydA2 putative Ni/Fe-hydrogenase small subunit (NCBI ptt file) 41, 125
Cj1434c Cj1434c putative sugar transferase (NCBI ptt file) 41, 44
Cj1468 Cj1468 putative integral membrane protein (NCBI ptt file) 12, 41
Cj1544c Cj1544c putative integral membrane protein (NCBI ptt file) 41, 44
Cj1553c Cj1553c putative type I restriction enzyme M protein (NCBI ptt file) 41, 46
Cj1623 Cj1623 putative membrane protein (NCBI ptt file) 15, 139
Cj1679 Cj1679 hypothetical protein Cj1679 (NCBI ptt file) 15, 152
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for Cj0603c
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend