Organism : Campylobacter jejuni | Module List:
Module 23 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 23

There are 3 regulatory influences for Module 23

Regulator Table (3)
Regulator Name Type
Cj0287c tf
Cj1230 tf
Cj0757 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
7428 3.70e+00 AtCcACCCAtAaAGC
Loader icon
7429 1.10e+03 AaAaTTtTaAGGAa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 23 is enriched for following functions.

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Replication, recombination and repair cog subcategory 4.41e-03 7.88e-03 4/33
Coenzyme transport and metabolism cog subcategory 1.88e-02 3.16e-02 4/33
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 23

There are 33 genes in Module 23

Gene Member Table (33)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
Cj0099 birA CDS None chromosome 107664 108317 + putative biotin--[acetyl-CoA-carboxylase] synthetase (NCBI ptt file) False
Cj0124c Cj0124c DUMMY None chromosome 0 0 + putative membrane protein (NCBI ptt file) False
Cj0125c Cj0125c DUMMY None chromosome 0 0 + dksA-like protein (NCBI ptt file) False
Cj0132 lpxC CDS None chromosome 134376 135260 + UDP-3-O-[3-hydroxymyristoyl] n-acetylglucosamine deacetylase (NCBI ptt file) False
Cj0134 thrB CDS None chromosome 135709 136587 + homoserine kinase (NCBI ptt file) False
Cj0181 tonB1 CDS None chromosome 177203 177949 + possible tonB transport protein (NCBI ptt file) False
Cj0184c Cj0184c DUMMY None chromosome 0 0 + possible serine False
Cj0230c Cj0230c DUMMY None chromosome 0 0 + hypothetical protein Cj0230c (NCBI ptt file) False
Cj0255c Cj0255c DUMMY None chromosome 0 0 + exodeoxyribonuclease (NCBI ptt file) False
Cj0267c Cj0267c DUMMY None chromosome 0 0 + putative integral membrane protein (NCBI ptt file) False
Cj0295 Cj0295 DUMMY None chromosome 0 0 + putative acetyltransferase (NCBI ptt file) False
Cj0460 nusA CDS None chromosome 424131 425219 + transcription termination factor (NCBI ptt file) True
Cj0503c hemH CDS None chromosome 466660 467571 - putative ferrochelatase (NCBI ptt file) False
Cj0522 Cj0522 DUMMY None chromosome 0 0 + putative membrane protein (NCBI ptt file) False
Cj0523 Cj0523 DUMMY None chromosome 0 0 + putative membrane protein (NCBI ptt file) False
Cj0546 Cj0546 DUMMY None chromosome 0 0 + hypothetical protein Cj0546 (NCBI ptt file) False
Cj0617 Cj0617 DUMMY None chromosome 0 0 + hypothetical protein Cj0617 (617 family) (NCBI ptt file) False
Cj0747 Cj0747 DUMMY None chromosome 0 0 + hypothetical protein Cj0747 (NCBI ptt file) False
Cj0849c Cj0849c DUMMY None chromosome 0 0 + hypothetical protein Cj0849c (NCBI ptt file) False
Cj0882c flhA CDS None chromosome 817579 819753 - flagellar biosynthesis protein (NCBI ptt file) False
Cj0904c Cj0904c DUMMY None chromosome 0 0 + putative RNA methylase (NCBI ptt file) False
Cj0952c Cj0952c DUMMY None chromosome 0 0 + putative membrane protein (NCBI ptt file) False
Cj1245c Cj1245c DUMMY None chromosome 0 0 + putative membrane protein (NCBI ptt file) False
Cj1254 Cj1254 DUMMY None chromosome 0 0 + hypothetical protein Cj1254 (NCBI ptt file) False
Cj1262 racS CDS None chromosome 1192456 1193691 + two-component sensor (histidine kinase) (NCBI ptt file) False
Cj1337 Cj1337 DUMMY None chromosome 0 0 + hypothetical protein Cj1337 (NCBI ptt file) False
Cj1373 Cj1373 DUMMY None chromosome 0 0 + putative integral membrane protein (NCBI ptt file) False
Cj1443c kpsF CDS None chromosome 1382528 1383475 - KpsF protein (NCBI ptt file) False
Cj1452 Cj1452 DUMMY None chromosome 0 0 + putative integral membrane protein (NCBI ptt file) False
Cj1473c Cj1473c DUMMY None chromosome 0 0 + putative ATP/GTP-binding protein (NCBI ptt file) False
Cj1481c Cj1481c DUMMY None chromosome 0 0 + putative helicase (NCBI ptt file) False
Cj1482c Cj1482c DUMMY None chromosome 0 0 + hypothetical protein Cj1482c (NCBI ptt file) False
Cj1583c Cj1583c DUMMY None chromosome 0 0 + putative peptide ABC-transport system permease protein (NCBI ptt file) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.