Organism : Geobacter sulfurreducens | Module List :
GSU0805 fsxA

cytoplasmic membrane protein FsxA (NCBI)

CircVis
Functional Annotations (2)
Function System
Protein affecting phage T7 exclusion by the F plasmid cog/ cog
membrane go/ cellular_component
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU0805
(Mouseover regulator name to see its description)

GSU0805 is regulated by 21 influences and regulates 0 modules.
Regulators for GSU0805 fsxA (21)
Regulator Module Operator
GSU0147 232 tf
GSU0721 232 tf
GSU0770 232 tf
GSU1382 232 tf
GSU1569 232 tf
GSU1831 232 tf
GSU2033 232 tf
GSU2041 232 tf
GSU2915 232 tf
GSU3324 232 tf
GSU0254 266 tf
GSU0473 266 tf
GSU1095 266 tf
GSU1115 266 tf
GSU1410 266 tf
GSU1522 266 tf
GSU2041 266 tf
GSU2523 266 tf
GSU2587 266 tf
GSU2915 266 tf
GSU3387 266 tf

Warning: GSU0805 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2624 2.30e+01 AaaggtaAAGatgtt.ttctG
Loader icon
2625 1.70e+02 TTTTtccttgA
Loader icon
2692 6.20e+01 CGgccGgC.GG
Loader icon
2693 3.80e+04 TATTtCAAcTCAATAtAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU0805

GSU0805 is enriched for 2 functions in 3 categories.
Enrichment Table (2)
Function System
Protein affecting phage T7 exclusion by the F plasmid cog/ cog
membrane go/ cellular_component
Module neighborhood information for GSU0805

GSU0805 has total of 47 gene neighbors in modules 232, 266
Gene neighbors (47)
Gene Common Name Description Module membership
GSU0027 GSU0027 TolR protein (VIMSS) 57, 266
GSU0028 tolQ tolQ protein (NCBI) 184, 266
GSU0030 GSU0030 oxygen-independent coproporphyrinogen III oxidase, putative (VIMSS) 118, 266
GSU0032 grpE GrpE protein (NCBI) 184, 266
GSU0045 GSU0045 hypothetical protein (VIMSS) 232, 300
GSU0121 GSU0121 nickel-iron hydrogenase, b-type cytochrome subunit (VIMSS) 14, 266
GSU0218 GSU0218 conserved hypothetical protein (VIMSS) 21, 266
GSU0296 cheA chemotaxis protein CheA, putative (NCBI) 206, 266
GSU0363 dinG ATP-dependent helicase DinG (NCBI) 107, 266
GSU0447 prmA ribosomal protein L11 methyltransferase (NCBI) 232, 282
GSU0567 tag DNA-3-methyladenine glycosylase I (NCBI) 232, 329
GSU0622 GSU0622 membrane protein, putative (NCBI) 76, 232
GSU0747 GSU0747 conserved hypothetical protein (VIMSS) 104, 232
GSU0805 fsxA cytoplasmic membrane protein FsxA (NCBI) 232, 266
GSU0875 GSU0875 hypothetical protein (VIMSS) 266, 291
GSU0913 GSU0913 ABC transporter, ATP-binding protein (VIMSS) 104, 232
GSU1044 GSU1044 MutT/nudix family protein (VIMSS) 118, 266
GSU1163 GSU1163 ABC transporter, permease protein (VIMSS) 189, 266
GSU1257 GSU1257 ABC transporter, periplasmic-substrate binding protein, putative (VIMSS) 104, 232
GSU1295 GSU1295 conserved hypothetical protein (VIMSS) 266, 293
GSU1359 GSU1359 helicase, putative (NCBI) 232, 293
GSU1423 pkcI HIT family protein (NCBI) 179, 232
GSU1533 recC exodeoxyribonuclease V, gamma subunit (NCBI) 45, 266
GSU1566 GSU1566 hypothetical protein (VIMSS) 213, 232
GSU1849 GSU1849 hypothetical protein (VIMSS) 87, 232
GSU1897 GSU1897 MTA/SAH nucleosidase, putative (VIMSS) 232, 329
GSU1958 GSU1958 polysaccharide deacetylase domain protein (NCBI) 213, 232
GSU2183 GSU2183 fic family protein (NCBI) 179, 232
GSU2252 GSU2252 heptosyltransferase family protein (VIMSS) 232, 324
GSU2296 GSU2296 HD domain protein (VIMSS) 141, 266
GSU2386 GSU2386 methylcobamide:CoM methyltransferase-related protein (NCBI) 189, 266
GSU2399 GSU2399 conserved hypothetical protein (VIMSS) 179, 232
GSU2460 GSU2460 ribonuclease BN, putative (VIMSS) 118, 266
GSU2534 GSU2534 sensory box/response regulator (VIMSS) 96, 266
GSU2559 GSU2559 exopolyphosphatase, putative (VIMSS) 266, 291
GSU2590 GSU2590 hypothetical protein (VIMSS) 232, 318
GSU2599 GSU2599 ISGsu4, transposase (VIMSS) 266, 268
GSU2767 GSU2767 cytochrome c family protein, putative (NCBI) 107, 266
GSU2774 GSU2774 hypothetical protein (VIMSS) 180, 232
GSU2901 GSU2901 membrane protein, putative (VIMSS) 186, 266
GSU2933 GSU2933 cytochrome b/b6 complex, iron-sulfur subunit (VIMSS) 107, 266
GSU2934 GSU2934 cytochrome c family protein (NCBI) 45, 266
GSU2993 GSU2993 cobalamin biosynthesis protein CbiG, putative (NCBI) 266, 291
GSU3153 GSU3153 iron-sulfur cluster-binding protein (VIMSS) 252, 266
GSU3325 uvrA excinuclease ABC, A subunit (NCBI) 38, 266
GSU3362 GSU3362 hypothetical protein (VIMSS) 232, 293
GSU3397 GSU3397 hypothetical protein (VIMSS) 232, 318
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU0805
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend