Organism : Geobacter sulfurreducens | Module List :
GSU0950

outer membrane efflux protein (VIMSS)

CircVis
Functional Annotations (3)
Function System
Outer membrane protein cog/ cog
transporter activity go/ molecular_function
transport go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU0950
(Mouseover regulator name to see its description)

GSU0950 is regulated by 19 influences and regulates 0 modules.
Regulators for GSU0950 (19)
Regulator Module Operator
GSU0254 217 tf
GSU0266 217 tf
GSU0770 217 tf
GSU1831 217 tf
GSU2915 217 tf
GSU3053 217 tf
GSU3217 217 tf
GSU3324 217 tf
GSU3387 217 tf
GSU3396 217 tf
GSU0366 132 tf
GSU0473 132 tf
GSU0682 132 tf
GSU1831 132 tf
GSU2753 132 tf
GSU2915 132 tf
GSU3217 132 tf
GSU3229 132 tf
GSU3324 132 tf

Warning: GSU0950 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2424 3.50e-01 gacAAaGGaaa
Loader icon
2425 5.50e+03 cAAgAAAa
Loader icon
2594 9.70e+03 gTGgTtaTCtT
Loader icon
2595 1.20e+04 tCGcgtTtcccga.aa.GTC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU0950

GSU0950 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Outer membrane protein cog/ cog
transporter activity go/ molecular_function
transport go/ biological_process
Module neighborhood information for GSU0950

GSU0950 has total of 31 gene neighbors in modules 132, 217
Gene neighbors (31)
Gene Common Name Description Module membership
GSU0009 GSU0009 sensory box histidine kinase (VIMSS) 217, 249
GSU0060 GSU0060 hypothetical protein (VIMSS) 163, 217
GSU0171 GSU0171 YaiI/YqxD family protein (VIMSS) 13, 132
GSU0233 GSU0233 conserved hypothetical protein (VIMSS) 132, 163
GSU0276 GSU0276 secretion protein, HlyD family (VIMSS) 217, 293
GSU0310 GSU0310 conserved hypothetical protein (VIMSS) 217, 249
GSU0410 fliF flagellar M-ring protein FliF (NCBI) 132, 283
GSU0424 fliQ flagellar biosynthetic protein FliQ (NCBI) 92, 217
GSU0440 ubiX 3-octaprenyl-4-hydroxybenzoate carboxy-lyase, putative (NCBI) 163, 217
GSU0442 GSU0442 radical SAM domain protein (NCBI) 217, 318
GSU0473 GSU0473 transcriptional regulator, putative (VIMSS) 107, 132
GSU0748 GSU0748 hypothetical protein (VIMSS) 217, 293
GSU0884 GSU0884 radical SAM domain protein (NCBI) 217, 294
GSU0950 GSU0950 outer membrane efflux protein (VIMSS) 132, 217
GSU1010 GSU1010 transglycosylase, Slt family (VIMSS) 217, 282
GSU1020 GSU1020 hypothetical protein (VIMSS) 92, 132
GSU1219 gltX glutamyl-tRNA synthetase (NCBI) 217, 282
GSU1276 carB carbamoyl-phosphate synthase, large subunit (NCBI) 132, 249
GSU1360 GSU1360 hypothetical protein (VIMSS) 179, 217
GSU1688 ribD riboflavin biosynthesis protein RibD (NCBI) 217, 282
GSU1831 GSU1831 conserved hypothetical protein TIGR00281 (VIMSS) 217, 282
GSU2040 GSU2040 hypothetical protein (VIMSS) 107, 132
GSU2093 GSU2093 ABC transporter, ATP-binding protein (VIMSS) 217, 249
GSU2328 GSU2328 None 107, 132
GSU2343 GSU2343 None 92, 132
GSU2542 GSU2542 hypothetical protein (VIMSS) 213, 217
GSU2766 GSU2766 decarboxylase family protein (NCBI) 132, 283
GSU2778 GSU2778 hypothetical protein (VIMSS) 132, 217
GSU3015 GSU3015 flagellin FlaG, putative (VIMSS) 217, 294
GSU3165 GSU3165 conserved domain protein (NCBI) 103, 132
GSU3315 GSU3315 major facilitator family transporter (VIMSS) 132, 283
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU0950
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend