Organism : Geobacter sulfurreducens | Module List :
GSU1286 cheY-2

chemotaxis protein CheY (NCBI)

CircVis
Functional Annotations (7)
Function System
FOG: CheY-like receiver cog/ cog
two-component response regulator activity go/ molecular_function
two-component signal transduction system (phosphorelay) go/ biological_process
protein histidine kinase activity go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
Two-component system kegg/ kegg pathway
Bacterial chemotaxis kegg/ kegg pathway
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU1286
(Mouseover regulator name to see its description)

GSU1286 is regulated by 17 influences and regulates 0 modules.
Regulators for GSU1286 cheY-2 (17)
Regulator Module Operator
GSU0178 198 tf
GSU0736 198 tf
GSU1320 198 tf
GSU1495 198 tf
GSU1569 198 tf
GSU2041 198 tf
GSU3370 198 tf
GSU3387 198 tf
GSU0178 221 tf
GSU0682 221 tf
GSU1320 221 tf
GSU1495 221 tf
GSU1569 221 tf
GSU1831 221 tf
GSU2041 221 tf
GSU2753 221 tf
GSU3324 221 tf

Warning: GSU1286 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2556 2.90e+03 catCCgG...gaaaggtcTct
Loader icon
2557 5.00e+03 atacaTGGAcAAaGA
Loader icon
2602 2.00e+03 tTTttT.AAtTtttATttAa
Loader icon
2603 2.50e+03 aa.ct.tttc.TaacGC.Aaaaa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU1286

GSU1286 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
FOG: CheY-like receiver cog/ cog
two-component response regulator activity go/ molecular_function
two-component signal transduction system (phosphorelay) go/ biological_process
protein histidine kinase activity go/ molecular_function
regulation of transcription, DNA-dependent go/ biological_process
Two-component system kegg/ kegg pathway
Bacterial chemotaxis kegg/ kegg pathway
Module neighborhood information for GSU1286

GSU1286 has total of 38 gene neighbors in modules 198, 221
Gene neighbors (38)
Gene Common Name Description Module membership
GSU0127 GSU0127 conserved hypothetical protein (VIMSS) 198, 201
GSU0137 GSU0137 hypothetical protein (NCBI) 198, 226
GSU0147 recX regulatory protein RecX (NCBI) 198, 338
GSU0257 GSU0257 conserved hypothetical protein (VIMSS) 198, 222
GSU0456 GSU0456 membrane protein, putative (VIMSS) 174, 221
GSU0465 efp-1 translation elongation factor P (NCBI) 198, 338
GSU0953 GSU0953 hypothetical protein (VIMSS) 87, 198
GSU1033 GSU1033 methyl-accepting chemotaxis protein (VIMSS) 36, 198
GSU1120 GSU1120 response regulator (VIMSS) 218, 221
GSU1123 GSU1123 metallo-beta-lactamase family protein (VIMSS) 218, 221
GSU1152 GSU1152 conserved hypothetical protein (VIMSS) 218, 221
GSU1286 cheY-2 chemotaxis protein CheY (NCBI) 198, 221
GSU1494 GSU1494 sensory box histidine kinase (VIMSS) 198, 338
GSU1495 GSU1495 sigma-54 dependent DNA-binding response regulator (VIMSS) 87, 198
GSU1568 GSU1568 conserved hypothetical protein (VIMSS) 71, 198
GSU1686 GSU1686 cytidine/deoxycytidylate deaminase family protein (VIMSS) 198, 221
GSU1725 GSU1725 nuclease SbcCD, C subunit, putative (NCBI) 218, 221
GSU1779 GSU1779 hypothetical protein (VIMSS) 221, 268
GSU1810 GSU1810 cell cycle protein MesJ, putative (VIMSS) 15, 198
GSU1950 GSU1950 capK related-protein (NCBI) 221, 268
GSU1951 GSU1951 conserved domain protein (VIMSS) 33, 221
GSU1952 GSU1952 hypothetical protein (VIMSS) 33, 221
GSU2016 GSU2016 sensory box/GGDEF family protein (VIMSS) 191, 221
GSU2017 GSU2017 conserved hypothetical protein (NCBI) 30, 221
GSU2018 gcvH-2 glycine cleavage system H protein (NCBI) 221, 309
GSU2019 accC acetyl-CoA carboxylase, biotin carboxylase (NCBI) 221, 309
GSU2022 aroQ 3-dehydroquinate dehydratase, type II (NCBI) 218, 221
GSU2024 GSU2024 hypothetical protein (VIMSS) 201, 221
GSU2026 aroK shikimate kinase (NCBI) 219, 221
GSU2212 cheY-5 chemotaxis protein CheY (NCBI) 198, 218
GSU2225 b2511 GTP-binding protein Era, putative (NCBI) 198, 260
GSU2278 prfB peptide chain release factor 2 (NCBI) 198, 213
GSU2465 lipB metallo-beta-lactamase family protein (NCBI) 15, 198
GSU2477 GSU2477 TPR domain/radical SAM/B12 binding domain protein (NCBI) 59, 198
GSU2888 GSU2888 B12-binding domain protein/radical SAM domain protein (NCBI) 221, 318
GSU3231 GSU3231 hypothetical protein (VIMSS) 218, 221
GSU3376 pleD GGDEF/response regulator receiver domain protein (NCBI) 201, 221
GSU3389 GSU3389 hypothetical protein (NCBI) 221, 282
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU1286
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend