Organism : Geobacter sulfurreducens | Module List :
GSU1399 corA-1

magnesium and cobalt transport protein CorA (NCBI)

CircVis
Functional Annotations (7)
Function System
Mg2+ and Co2+ transporters cog/ cog
cobalt ion transport go/ biological_process
cobalt ion transmembrane transporter activity go/ molecular_function
magnesium ion transmembrane transporter activity go/ molecular_function
magnesium ion transport go/ biological_process
membrane go/ cellular_component
corA tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU1399
(Mouseover regulator name to see its description)

GSU1399 is regulated by 21 influences and regulates 0 modules.
Regulators for GSU1399 corA-1 (21)
Regulator Module Operator
GSU0031 240 tf
GSU0187 240 tf
GSU0581 240 tf
GSU1201 240 tf
GSU1525 240 tf
GSU1831 240 tf
GSU2753 240 tf
GSU2964 240 tf
GSU3396 240 tf
GSU0031 234 tf
GSU0300 234 tf
GSU0581 234 tf
GSU0682 234 tf
GSU1483 234 tf
GSU1617 234 tf
GSU1692 234 tf
GSU2753 234 tf
GSU2817 234 tf
GSU3045 234 tf
GSU3053 234 tf
GSU3324 234 tf

Warning: GSU1399 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2628 1.20e+04 GGcacGtGGcc.tgA.gaGCgg
Loader icon
2629 6.70e+03 tTgAggggaGacCgtCcGGggGc
Loader icon
2640 9.20e+02 tCa..gcGCaG
Loader icon
2641 9.30e+03 TActaCAAaAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU1399

GSU1399 is enriched for 7 functions in 3 categories.
Enrichment Table (7)
Function System
Mg2+ and Co2+ transporters cog/ cog
cobalt ion transport go/ biological_process
cobalt ion transmembrane transporter activity go/ molecular_function
magnesium ion transmembrane transporter activity go/ molecular_function
magnesium ion transport go/ biological_process
membrane go/ cellular_component
corA tigr/ tigrfam
Module neighborhood information for GSU1399

GSU1399 has total of 39 gene neighbors in modules 234, 240
Gene neighbors (39)
Gene Common Name Description Module membership
GSU0031 hrcA heat-inducible transcription repressor HrcA (NCBI) 184, 234
GSU0173 GSU0173 conserved hypothetical protein (VIMSS) 194, 240
GSU0184 b2690 HAD-superfamily hydrolase, subfamily IA, variant 1 (NCBI) 45, 234
GSU0187 GSU0187 conserved hypothetical protein (VIMSS) 237, 240
GSU0203 GSU0203 conserved hypothetical protein (VIMSS) 194, 234
GSU0409 fliE flagellar hook-basal body complex protein FliE (NCBI) 41, 234
GSU0421 fliM flagellar motor switch protein FliM (NCBI) 234, 244
GSU0422 fliN flagellar motor switch protein FliN (NCBI) 181, 234
GSU0684 cheW-2 purine-binding chemotaxis protein CheW (NCBI) 100, 234
GSU0706 GSU0706 major facilitator family transporter (VIMSS) 234, 275
GSU0707 sugE sugE protein (NCBI) 95, 234
GSU0708 GSU0708 multidrug resistance protein (VIMSS) 234, 244
GSU0711 GSU0711 endonuclease/exonuclease/phosphatase family protein (NCBI) 194, 240
GSU0724 GSU0724 conserved hypothetical protein (NCBI) 49, 234
GSU0897 GSU0897 conserved hypothetical protein (VIMSS) 234, 244
GSU0904 GSU0904 HD domain protein (VIMSS) 234, 244
GSU0918 GSU0918 S-adenosylmethionine synthetase family protein (NCBI) 49, 240
GSU1007 GSU1007 GAF domain/HD domain protein (NCBI) 177, 240
GSU1014 GSU1014 smr domain protein (VIMSS) 234, 240
GSU1171 GSU1171 conserved hypothetical protein (VIMSS) 195, 234
GSU1303 GSU1303 methyl-accepting chemotaxis protein (VIMSS) 45, 234
GSU1399 corA-1 magnesium and cobalt transport protein CorA (NCBI) 234, 240
GSU1560 GSU1560 radical SAM domain protein (NCBI) 138, 240
GSU1726 GSU1726 hypothetical protein (VIMSS) 195, 240
GSU1728 GSU1728 conserved hypothetical protein (VIMSS) 123, 240
GSU1747 GSU1747 hypothetical protein (VIMSS) 127, 240
GSU2292 ald alanine dehydrogenase (NCBI) 123, 240
GSU2387 GSU2387 B12-binding domain (NCBI) 165, 234
GSU2593 GSU2593 ISGsu6, transposase OrfA (VIMSS) 234, 300
GSU2626 GSU2626 conserved hypothetical protein (VIMSS) 41, 234
GSU2649 GSU2649 amino acid ABC transporter, amino acid-binding protein (VIMSS) 237, 240
GSU2655 pdhB pyruvate dehydrogenase complex E1 component, beta subunit (NCBI) 240, 258
GSU2755 GSU2755 periplasmic substrate-binding protein/sensor histidine kinase (VIMSS) 234, 244
GSU2758 uvrA excinuclease ABC family protein (NCBI) 240, 327
GSU2903 GSU2903 conserved domain protein (VIMSS) 41, 234
GSU3032 GSU3032 hypothetical protein (VIMSS) 45, 234
GSU3115 GSU3115 hypothetical protein (VIMSS) 100, 234
GSU3343 GSU3343 SpoVR-like family protein (NCBI) 177, 240
GSU3352 GSU3352 hypothetical protein (VIMSS) 237, 240
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU1399
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend