Organism : Geobacter sulfurreducens | Module List :
GSU1764 dxs-2

deoxyxylulose-5-phosphate synthase (NCBI)

CircVis
Functional Annotations (8)
Function System
Deoxyxylulose-5-phosphate synthase cog/ cog
1-deoxy-D-xylulose-5-phosphate synthase activity go/ molecular_function
terpenoid biosynthetic process go/ biological_process
thiamine pyrophosphate binding go/ molecular_function
Terpenoid backbone biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
dxs tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU1764
(Mouseover regulator name to see its description)

GSU1764 is regulated by 16 influences and regulates 0 modules.
Regulators for GSU1764 dxs-2 (16)
Regulator Module Operator
GSU0254 190 tf
GSU0473 190 tf
GSU0776 190 tf
GSU1268 190 tf
GSU1831 190 tf
GSU1940 190 tf
GSU1989 190 tf
GSU2033 190 tf
GSU2915 190 tf
GSU3324 190 tf
GSU0205 13 tf
GSU0473 13 tf
GSU1410 13 tf
GSU2915 13 tf
GSU3324 13 tf
GSU3387 13 tf

Warning: GSU1764 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2186 3.20e+01 AA.a.aatGatattTc.gCaa
Loader icon
2187 6.20e+04 AtTaTa.cTAt.tgATAcTaa
Loader icon
2540 2.80e-03 atTTtaTaac.AaatttaataAtt
Loader icon
2541 1.30e+00 C.gGTaGtTtTgAaGATAAT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU1764

GSU1764 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Deoxyxylulose-5-phosphate synthase cog/ cog
1-deoxy-D-xylulose-5-phosphate synthase activity go/ molecular_function
terpenoid biosynthetic process go/ biological_process
thiamine pyrophosphate binding go/ molecular_function
Terpenoid backbone biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
dxs tigr/ tigrfam
Module neighborhood information for GSU1764

GSU1764 has total of 37 gene neighbors in modules 13, 190
Gene neighbors (37)
Gene Common Name Description Module membership
GSU0008 GSU0008 sensory box histidine kinase/response regulator (VIMSS) 190, 208
GSU0171 GSU0171 YaiI/YqxD family protein (VIMSS) 13, 132
GSU0196 GSU0196 thioesterase family protein (NCBI) 13, 333
GSU0641 GSU0641 hypothetical protein (VIMSS) 13, 299
GSU0834 GSU0834 hypothetical protein (VIMSS) 140, 190
GSU0908 GSU0908 moaD family protein (NCBI) 13, 294
GSU0984 GSU0984 hypothetical protein (VIMSS) 13, 299
GSU1268 GSU1268 transcriptional regulator, LysR family (VIMSS) 130, 190
GSU1294 GSU1294 methyl-accepting chemotaxis protein (VIMSS) 82, 190
GSU1338 GSU1338 heavy-metal-associated domain protein (VIMSS) 13, 299
GSU1429 GSU1429 membrane protein, putative (NCBI) 190, 208
GSU1541 GSU1541 conserved hypothetical protein (VIMSS) 13, 147
GSU1625 GSU1625 hypothetical protein (VIMSS) 172, 190
GSU1764 dxs-2 deoxyxylulose-5-phosphate synthase (NCBI) 13, 190
GSU1843 GSU1843 metallo-beta-lactamase family protein (NCBI) 190, 208
GSU1922 GSU1922 membrane protein, putative (VIMSS) 190, 208
GSU2101 GSU2101 formate acetyltransferase (VIMSS) 13, 333
GSU2133 GSU2133 lipoprotein, putative (VIMSS) 113, 190
GSU2134 GSU2134 nitrogen regulatory protein P-II, putative (VIMSS) 113, 190
GSU2176 GSU2176 hypothetical protein (VIMSS) 113, 190
GSU2186 GSU2186 conserved hypothetical protein (VIMSS) 82, 190
GSU2187 GSU2187 ABC transporter, permease protein (VIMSS) 82, 190
GSU2188 GSU2188 ABC transporter, ATP-binding protein (VIMSS) 82, 190
GSU2189 GSU2189 sensor histidine kinase (VIMSS) 82, 190
GSU2229 tmk thymidylate kinase (NCBI) 184, 190
GSU2322 GSU2322 hypothetical protein (VIMSS) 13, 27
GSU2347 GSU2347 conserved hypothetical protein (VIMSS) 97, 190
GSU2421 GSU2421 hypothetical protein (VIMSS) 1, 190
GSU2432 GSU2432 cytochrome c family protein (VIMSS) 13, 122
GSU2457 GSU2457 conserved hypothetical protein (NCBI) 13, 299
GSU2589 GSU2589 hypothetical protein (VIMSS) 156, 190
GSU2606 aroA 3-phosphoshikimate 1-carboxyvinyltransferase (NCBI) 13, 145
GSU2651 GSU2651 amino acid ABC transporter, ATP-binding protein (VIMSS) 13, 156
GSU2660 GSU2660 conserved domain protein (NCBI) 78, 190
GSU2810 GSU2810 hypothetical protein (VIMSS) 13, 299
GSU2906 GSU2906 conserved hypothetical protein (VIMSS) 13, 113
GSU3324 GSU3324 transcriptional regulator, Cro/CI family (VIMSS) 13, 157
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU1764
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend