Organism : Geobacter sulfurreducens | Module List :
GSU2025 aroB

3-dehydroquinate synthase (NCBI)

CircVis
Functional Annotations (11)
Function System
3-dehydroquinate synthetase cog/ cog
3-dehydroquinate synthase activity go/ molecular_function
metabolic process go/ biological_process
aromatic amino acid family biosynthetic process go/ biological_process
oxidoreductase activity go/ molecular_function
metal ion binding go/ molecular_function
deacetylipecoside synthase activity go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroB tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU2025
(Mouseover regulator name to see its description)

GSU2025 is regulated by 21 influences and regulates 0 modules.
Regulators for GSU2025 aroB (21)
Regulator Module Operator
GSU0581 139 tf
GSU0732 139 tf
GSU1201 139 tf
GSU1218 139 tf
GSU1419 139 tf
GSU1495 139 tf
GSU1525 139 tf
GSU1934 139 tf
GSU2523 139 tf
GSU2571 139 tf
GSU3060 139 tf
GSU0147 98 tf
GSU0187 98 tf
GSU0581 98 tf
GSU1013 98 tf
GSU1201 98 tf
GSU1495 98 tf
GSU1525 98 tf
GSU1831 98 tf
GSU1934 98 tf
GSU2571 98 tf

Warning: GSU2025 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2356 9.20e+02 aGagca.GacataAtcCtgtT.AC
Loader icon
2357 2.10e+03 GGGGagga
Loader icon
2438 3.70e-02 TaatgC.atAAaTttTcA.ctctT
Loader icon
2439 4.20e+00 taaAccctTtTtTCag.cca.aAa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU2025

GSU2025 is enriched for 11 functions in 3 categories.
Enrichment Table (11)
Function System
3-dehydroquinate synthetase cog/ cog
3-dehydroquinate synthase activity go/ molecular_function
metabolic process go/ biological_process
aromatic amino acid family biosynthetic process go/ biological_process
oxidoreductase activity go/ molecular_function
metal ion binding go/ molecular_function
deacetylipecoside synthase activity go/ molecular_function
Phenylalanine tyrosine and tryptophan biosynthesis kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
Biosynthesis of secondary metabolites kegg/ kegg pathway
aroB tigr/ tigrfam
Module neighborhood information for GSU2025

GSU2025 has total of 32 gene neighbors in modules 98, 139
Gene neighbors (32)
Gene Common Name Description Module membership
GSU0337 hemL glutamate-1-semialdehyde-2,1-aminomutase (NCBI) 139, 170
GSU0368 GSU0368 lipoprotein, putative (VIMSS) 43, 98
GSU0578 glyQ glycyl-tRNA synthetase, alpha subunit (NCBI) 43, 98
GSU0883 GSU0883 ferric enterobactin receptor, putative (VIMSS) 139, 192
GSU1008 fabI enoyl-(acyl-carrier-protein) reductase (NCBI) 43, 98
GSU1043 GSU1043 sensory box histidine kinase (VIMSS) 98, 145
GSU1104 GSU1104 hypothetical protein (VIMSS) 139, 168
GSU1105 pepQ-1 xaa-pro dipeptidase (NCBI) 139, 168
GSU1111 GSU1111 conserved hypothetical protein TIGR00048 (VIMSS) 139, 212
GSU1192 GSU1192 conserved hypothetical protein (VIMSS) 98, 158
GSU1203 GSU1203 sodium/hydrogen exchanger family/TrkA domain protein (VIMSS) 43, 98
GSU1206 GSU1206 HDIG domain protein (NCBI) 98, 334
GSU1282 GSU1282 hypothetical protein (VIMSS) 98, 219
GSU1312 GSU1312 radical SAM domain protein, selenocysteine-containing (NCBI) 139, 230
GSU1323 GSU1323 conserved hypothetical protein (NCBI) 98, 139
GSU1324 GSU1324 RNA-binding protein (VIMSS) 29, 98
GSU1357 GSU1357 conserved hypothetical protein (VIMSS) 139, 324
GSU1440 GSU1440 hypothetical protein (VIMSS) 67, 139
GSU1578 mutA B12-binding protein (NCBI) 139, 219
GSU1690 ribA 3,4-dihydroxy-2-butanone 4-phosphate synthase/GTP cyclohydrolase II (NCBI) 67, 98
GSU1754 kamA L-lysine 2,3-aminomutase (NCBI) 74, 139
GSU1759 purN phosphoribosylglycinamide formyltransferase (VIMSS) 98, 139
GSU1839 GSU1839 hydrolase, haloacid dehalogenase-like family (VIMSS) 98, 219
GSU1841 GSU1841 membrane protein, putative (NCBI) 98, 319
GSU1842 GSU1842 polysaccharide biosynthesis/export domain protein (NCBI) 98, 319
GSU1892 GSU1892 phosphatase, YrbI family (NCBI) 98, 139
GSU1935 birA birA biofunctional protein, putative (NCBI) 98, 212
GSU2004 GSU2004 3-octaprenyl-4-hydroxybenzoate carboxy-lyase family protein (NCBI) 98, 205
GSU2025 aroB 3-dehydroquinate synthase (NCBI) 98, 139
GSU2027 aroC chorismate synthase (NCBI) 139, 219
GSU2367 GSU2367 organic solvent tolerance protein, putative (NCBI) 98, 212
GSU3275 GSU3275 hypothetical protein (NCBI) 98, 192
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU2025
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend