Organism : Geobacter sulfurreducens | Module List :
GSU3212 proB

glutamate 5-kinase (NCBI)

CircVis
Functional Annotations (8)
Function System
Glutamate 5-kinase cog/ cog
RNA binding go/ molecular_function
glutamate 5-kinase activity go/ molecular_function
cytoplasm go/ cellular_component
proline biosynthetic process go/ biological_process
Arginine and proline metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
proB tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU3212
(Mouseover regulator name to see its description)

GSU3212 is regulated by 18 influences and regulates 0 modules.
Regulators for GSU3212 proB (18)
Regulator Module Operator
GSU0178 121 tf
GSU0266 121 tf
GSU1410 121 tf
GSU1831 121 tf
GSU1989 121 tf
GSU2524 121 tf
GSU3370 121 tf
GSU0770 160 tf
GSU0776 160 tf
GSU0836 160 tf
GSU1495 160 tf
GSU2033 160 tf
GSU2571 160 tf
GSU2670 160 tf
GSU2753 160 tf
GSU2941 160 tf
GSU2980 160 tf
GSU3457 160 tf

Warning: GSU3212 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2402 6.70e+00 atGaacttaActttcagTT
Loader icon
2403 8.40e+02 TaTCcCTtgtgttagaacaaaAAa
Loader icon
2480 2.90e+03 TCCcttCttCTttC
Loader icon
2481 3.90e+03 ctcatT.tgcTAtAct..c..tTt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU3212

GSU3212 is enriched for 8 functions in 3 categories.
Enrichment Table (8)
Function System
Glutamate 5-kinase cog/ cog
RNA binding go/ molecular_function
glutamate 5-kinase activity go/ molecular_function
cytoplasm go/ cellular_component
proline biosynthetic process go/ biological_process
Arginine and proline metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
proB tigr/ tigrfam
Module neighborhood information for GSU3212

GSU3212 has total of 51 gene neighbors in modules 121, 160
Gene neighbors (51)
Gene Common Name Description Module membership
GSU0073 GSU0073 outer membrane protein, putative (VIMSS) 160, 275
GSU0074 elbB enhancing lycopene biosynthesis protein 2 (NCBI) 160, 279
GSU0135 hemB delta-aminolevulinic acid dehydratase (NCBI) 91, 160
GSU0153 argG argininosuccinate synthase (NCBI) 160, 258
GSU0155 GSU0155 hypothetical protein (VIMSS) 160, 289
GSU0451 tcrA DNA-binding response regulator (NCBI) 160, 210
GSU0452 GSU0452 sensor histidine kinase (VIMSS) 4, 160
GSU0453 pfs MTA/SAH nucleosidase (NCBI) 127, 160
GSU0454 GSU0454 conserved hypothetical protein (VIMSS) 99, 160
GSU0501 GSU0501 lipoprotein, putative (VIMSS) 114, 121
GSU0503 crcB crcB protein (NCBI) 77, 121
GSU0504 GSU0504 conserved hypothetical protein (VIMSS) 121, 284
GSU0508 GSU0508 conserved hypothetical protein TIGR00247 (NCBI) 7, 121
GSU0577 recO DNA repair protein RecO (NCBI) 160, 225
GSU0617 GSU0617 NHL repeat domain protein (VIMSS) 121, 148
GSU0729 GSU0729 iron-sulfur cluster-binding protein (VIMSS) 121, 291
GSU0776 GSU0776 sigma-54 dependent DNA-binding response regulator (VIMSS) 160, 184
GSU0846 acnA aconitate hydratase 1 (NCBI) 97, 160
GSU0927 GSU0927 peptidase, M16 family (NCBI) 20, 121
GSU1025 GSU1025 conserved domain protein (NCBI) 59, 160
GSU1026 GSU1026 conserved hypothetical protein (VIMSS) 63, 160
GSU1151 GSU1151 conserved hypothetical protein (VIMSS) 121, 277
GSU1316 GSU1316 response regulator (VIMSS) 160, 258
GSU1379 fur ferric uptake regulation protein (Dmitry Rodionov) 81, 121
GSU1381 GSU1381 hypothetical protein (VIMSS) 121, 324
GSU1490 aroE shikimate 5-dehydrogenase (NCBI) 83, 121
GSU1571 GSU1571 conserved domain protein (NCBI) 121, 153
GSU1938 GSU1938 hypothetical protein (VIMSS) 60, 160
GSU2068 GSU2068 6-phosphofructokinase (VIMSS) 88, 121
GSU2129 GSU2129 hypothetical protein (VIMSS) 121, 324
GSU2144 GSU2144 sensor histidine kinase (VIMSS) 121, 294
GSU2393 GSU2393 ISGsu5, transposase, truncation (VIMSS) 121, 189
GSU2458 GSU2458 penicillin-binding protein, putative (NCBI) 160, 258
GSU2489 GSU2489 deoxyribonuclease, TatD family (VIMSS) 128, 160
GSU2492 GSU2492 sensory box histidine kinase (VIMSS) 99, 160
GSU2789 GSU2789 sensory box histidine kinase (VIMSS) 121, 269
GSU2859 tuf-1 translation elongation factor Tu (NCBI) 24, 160
GSU2871 tuf-2 translation elongation factor Tu (NCBI) 10, 160
GSU3049 GSU3049 hypothetical protein (VIMSS) 160, 164
GSU3112 GSU3112 cell division protein FtsK, putative (VIMSS) 128, 160
GSU3207 gpmA phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent (NCBI) 9, 160
GSU3208 GSU3208 conserved hypothetical protein (NCBI) 88, 121
GSU3209 GSU3209 iojap-related protein (VIMSS) 160, 335
GSU3210 nadD nicotinate (nicotinamide) nucleotide adenylyltransferase (NCBI) 160, 214
GSU3211 proA gamma-glutamyl phosphate reductase (NCBI) 160, 321
GSU3212 proB glutamate 5-kinase (NCBI) 121, 160
GSU3309 GSU3309 conserved hypothetical protein (VIMSS) 51, 121
GSU3336 GSU3336 hypothetical protein (NCBI) 3, 160
GSU3373 sun Sun protein (NCBI) 160, 336
GSU3374 rpe ribulose-phosphate 3-epimerase (NCBI) 125, 160
GSU3434 nuoI-2 NADH dehydrogenase I, I subunit (NCBI) 160, 275
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU3212
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend