Organism : Geobacter sulfurreducens | Module List :
GSU3256 galT

galactose-1-phosphate uridylyltransferase (NCBI)

CircVis
Functional Annotations (11)
Function System
Galactose-1-phosphate uridylyltransferase cog/ cog
nucleic acid binding go/ molecular_function
galactose metabolic process go/ biological_process
UDP-glucose:hexose-1-phosphate uridylyltransferase activity go/ molecular_function
methyltransferase activity go/ molecular_function
UTP:galactose-1-phosphate uridylyltransferase activity go/ molecular_function
methylation go/ biological_process
Galactose metabolism kegg/ kegg pathway
Amino sugar and nucleotide sugar metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
galT_1 tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for GSU3256
(Mouseover regulator name to see its description)

GSU3256 is regulated by 17 influences and regulates 0 modules.
Regulators for GSU3256 galT (17)
Regulator Module Operator
GSU0175 279 tf
GSU1218 279 tf
GSU1525 279 tf
GSU1687 279 tf
GSU1992 279 tf
GSU2964 279 tf
GSU0366 188 tf
GSU1013 188 tf
GSU1483 188 tf
GSU1522 188 tf
GSU1525 188 tf
GSU1727 188 tf
GSU1992 188 tf
GSU2149 188 tf
GSU2237 188 tf
GSU2262 188 tf
GSU2831 188 tf

Warning: GSU3256 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2536 6.30e+00 ttgaGcatTtTtTcAaCaatttA
Loader icon
2537 6.70e+03 AaAC.cGgAAcgaAaagGGaG
Loader icon
2718 7.10e+02 AGATggcGGcGaaAATctATctAT
Loader icon
2719 3.30e+01 GcCaCAAccaTACCA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for GSU3256

GSU3256 is enriched for 11 functions in 3 categories.
Enrichment Table (11)
Function System
Galactose-1-phosphate uridylyltransferase cog/ cog
nucleic acid binding go/ molecular_function
galactose metabolic process go/ biological_process
UDP-glucose:hexose-1-phosphate uridylyltransferase activity go/ molecular_function
methyltransferase activity go/ molecular_function
UTP:galactose-1-phosphate uridylyltransferase activity go/ molecular_function
methylation go/ biological_process
Galactose metabolism kegg/ kegg pathway
Amino sugar and nucleotide sugar metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
galT_1 tigr/ tigrfam
Module neighborhood information for GSU3256

GSU3256 has total of 32 gene neighbors in modules 188, 279
Gene neighbors (32)
Gene Common Name Description Module membership
GSU0051 GSU0051 CRISPR-associated HD domain protein (NCBI) 188, 244
GSU0069 GSU0069 oxidoreductase, iron-sulfur cluster-binding subunit (VIMSS) 270, 279
GSU0074 elbB enhancing lycopene biosynthesis protein 2 (NCBI) 160, 279
GSU0075 GSU0075 conserved hypothetical protein (VIMSS) 251, 279
GSU0076 GSU0076 hypothetical protein (VIMSS) 251, 279
GSU0077 GSU0077 hypothetical protein (VIMSS) 251, 279
GSU0078 GSU0078 hypothetical protein (VIMSS) 251, 279
GSU0104 GSU0104 response regulator, putative (VIMSS) 200, 279
GSU0200 iorA isoquinoline 1-oxidoreductase, alpha subunit (NCBI) 188, 261
GSU0696 GSU0696 glucose 1-dehydrogenase (VIMSS) 188, 280
GSU0726 GSU0726 chemotaxis protein CheD, putative (VIMSS) 177, 279
GSU1159 GSU1159 intracellular protease, PfpI family (NCBI) 279, 310
GSU1209 GSU1209 conserved hypothetical protein (VIMSS) 177, 188
GSU1306 GSU1306 PHP domain protein (NCBI) 118, 188
GSU1727 GSU1727 dnaK suppressor, putative (VIMSS) 188, 339
GSU1992 GSU1992 transcriptional regulator, Crp/Fnr family (VIMSS) 264, 279
GSU2054 GSU2054 hypothetical protein (VIMSS) 151, 279
GSU2148 GSU2148 hypothetical protein (VIMSS) 188, 280
GSU2536 GSU2536 dienelactone hydrolase family protein (VIMSS) 188, 280
GSU2657 cotA spore coat protein A (NCBI) 165, 188
GSU2910 GSU2910 hypothetical protein (VIMSS) 166, 188
GSU3076 GSU3076 cell division protein FtsL, putative (NCBI) 188, 200
GSU3152 GSU3152 sensory box protein (VIMSS) 85, 188
GSU3251 GSU3251 conserved hypothetical protein (VIMSS) 188, 251
GSU3252 GSU3252 sensor histidine kinase (VIMSS) 279, 320
GSU3253 GSU3253 response regulator (VIMSS) 100, 279
GSU3255 GSU3255 conserved hypothetical protein (NCBI) 100, 279
GSU3256 galT galactose-1-phosphate uridylyltransferase (NCBI) 188, 279
GSU3257 glgA-2 glycogen synthase (NCBI) 279, 320
GSU3258 GSU3258 hypothetical protein (VIMSS) 279, 320
GSU3342 GSU3342 conserved domain protein (NCBI) 177, 279
GSU3344 GSU3344 hypothetical protein (VIMSS) 27, 279
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for GSU3256
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend