Organism : Halobacterium salinarum NRC-1 | Module List:
Module 67 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 67

There are 3 regulatory influences for Module 67

Regulator Table (3)
Regulator Name Type
VNG0194H tf
VNG2661G
VNG1029C
combiner
VNG1899G
VNG2243G
combiner

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
1109 6.20e+00 CagtaAcAaTgA
Loader icon
1110 2.00e+02 Gtaagg.Ga.g..cTaTt.Gt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 67 is enriched for following functions.

KEGG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini Hochberg pvalue Genes with function Method
Oxidative phosphorylation kegg pathway 0.00e+00 0.00e+00 8/21
Methane metabolism kegg pathway 0.00e+00 0.00e+00 8/21
Porphyrin and chlorophyll metabolism kegg pathway 2.00e-06 3.10e-05 4/21
Metabolic pathways kegg pathway 0.00e+00 2.00e-06 13/21
Energy Metabolism kegg subcategory 0.00e+00 0.00e+00 17/21
Metabolism of Cofactors and Vitamins kegg subcategory 4.64e-04 2.78e-03 4/21
Metabolism kegg subcategory 1.00e-06 1.20e-05 15/21
Metabolism kegg category 0.00e+00 0.00e+00 24/21
Global kegg category 1.00e-06 8.00e-06 15/21
Metabolism kegg category 0.00e+00 4.00e-06 13/21
Energy Metabolism kegg subcategory 0.00e+00 0.00e+00 9/21
Oxidative phosphorylation kegg pathway 0.00e+00 0.00e+00 8/21
Methane metabolism kegg pathway 0.00e+00 0.00e+00 8/21
Metabolism of Cofactors and Vitamins kegg subcategory 4.64e-04 2.79e-03 4/21
Porphyrin and chlorophyll metabolism kegg pathway 2.00e-06 3.00e-05 4/21
Global kegg category 0.00e+00 2.00e-06 13/21
Metabolism kegg subcategory 0.00e+00 2.00e-06 13/21
Metabolic pathways kegg pathway 0.00e+00 1.00e-06 13/21

GO Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
cobalamin biosynthetic process biological_process 6.00e-06 3.70e-05 4/21
ATP synthesis coupled proton transport biological_process 0.00e+00 0.00e+00 7/21
hydrogen-transporting two-sector ATPase activity molecular_function 0.00e+00 0.00e+00 8/21
hydrogen ion transporting ATP synthase activity, rotational mechanism molecular_function 0.00e+00 0.00e+00 8/21
proton-transporting ATPase activity, rotational mechanism molecular_function 0.00e+00 0.00e+00 8/21

TIGRFam Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Energy metabolism tigr mainrole 3.47e-04 2.56e-03 3/21
Energy metabolism tigr mainrole 3.47e-04 6.00e-04 3/21

COG Enrichment Table

Function Name Function Type Unadjusted pvalue Benjamini& Hochberg pvalue Genes with function Method
Energy production and conversion cog subcategory 5.00e-06 1.64e-04 7/21
Coenzyme transport and metabolism cog subcategory 1.46e-03 1.64e-02 4/21
Metabolism cog category 3.64e-03 4.13e-02 11/21
Metabolism cog category 1.85e-03 3.32e-03 11/21
Energy production and conversion cog subcategory 5.00e-06 1.30e-05 7/21
Coenzyme transport and metabolism cog subcategory 1.46e-03 2.67e-03 4/21
Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 67

There are 21 genes in Module 67

Gene Member Table (21)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
VNG0040C CDS 1446985 chromosome 33182 33628 - hypothetical protein VNG0040C True
VNG0207H CDS 1447124 chromosome 175115 175471 + hypothetical protein VNG0207H False
VNG0208H CDS 1447125 chromosome 175471 175920 + hypothetical protein VNG0208H False
VNG0209H CDS 1447126 chromosome 175913 176947 + hypothetical protein VNG0209H False
VNG1294G slyD CDS 1447940 chromosome 966623 967534 - peptidyl-prolyl cis-trans isomerase False
VNG1542G sucD CDS 1448127 chromosome 1149527 1150396 + hypothetical protein VNG1542G False
VNG1550G cbiT CDS 1448134 chromosome 1156903 1157466 + cobalamin biosynthesis protein False
VNG1551G cbiL CDS 1448135 chromosome 1157463 1158167 + cobalt-precorrin-2 C(20)-methyltransferase False
VNG1554G cbiG CDS 1448137 chromosome 1159023 1160000 + cobalamin biosynthesis protein CbiG False
VNG1557G cbiH CDS 1448139 chromosome 1160827 1161834 + cobalamin biosynthesis protein False
VNG1558H CDS 1448140 chromosome 1161834 1162082 + hypothetical protein VNG1558H False
VNG2138G atpB CDS 1448579 chromosome 1572295 1573710 - V-type ATP synthase subunit B False
VNG2139G atpA CDS 1448580 chromosome 1573716 1575473 - V-type ATP synthase subunit A False
VNG2140G atpF CDS 1448581 chromosome 1575479 1575841 - V-type ATP synthase subunit F False
VNG2141G atpC CDS 1448582 chromosome 1575838 1576896 - V-type ATP synthase subunit C False
VNG2142G atpE CDS 1448583 chromosome 1576893 1577480 - V-type ATP synthase subunit E False
VNG2143G atpK CDS 1448584 chromosome 1577503 1577718 - H+-transporting ATP synthase subunit K False
VNG2144G atpI CDS 1448585 chromosome 1577784 1579952 - H+-transporting ATP synthase subunit I False
VNG2146H CDS 1448586 chromosome 1579939 1580271 - hypothetical protein VNG2146H False
VNG2674H CDS 1449004 chromosome 2006446 2006856 - hypothetical protein VNG2674H False
VNG2679G csg CDS 1449008 chromosome 2011729 2014239 + cell surface glycoprotein False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.