Organism : Pseudomonas aeruginosa | Module List :
PA0761 nadB

L-aspartate oxidase (NCBI)

CircVis
Functional Annotations (9)
Function System
Aspartate oxidase cog/ cog
cytoplasm go/ cellular_component
electron transport go/ biological_process
L-aspartate oxidase activity go/ molecular_function
NAD biosynthetic process go/ biological_process
Alanine aspartate and glutamate metabolism kegg/ kegg pathway
Nicotinate and nicotinamide metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
nadB tigr/ tigrfam
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA0761
(Mouseover regulator name to see its description)

PA0761 is regulated by 31 influences and regulates 0 modules.
Regulators for PA0761 nadB (31)
Regulator Module Operator
PA0393 94 tf
PA0547 94 tf
PA1526 94 tf
PA1776 94 tf
PA3002 94 tf
PA3604 94 tf
PA3804 94 tf
PA3948 94 tf
PA4052 94 tf
PA4451 94 tf
PA4530 94 tf
PA4547 94 tf
PA4755 94 tf
PA5344 94 tf
PA5562 94 tf
PA0376 165 tf
PA1201 165 tf
PA1269 165 tf
PA1422 165 tf
PA1520 165 tf
PA2076 165 tf
PA2467 165 tf
PA3927 165 tf
PA3932 165 tf
PA3965 165 tf
PA4057 165 tf
PA4755 165 tf
PA4769 165 tf
PA4853 165 tf
PA5301 165 tf
PA5344 165 tf

Warning: PA0761 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3020 1.60e+03 TTT.CcccT
Loader icon
3021 1.60e+04 TTC.gAGTTT
Loader icon
3158 2.90e-07 ctTcgGCAggCgCGgG..GCCGCC
Loader icon
3159 3.00e-06 gGCCctGctcGAaTaCagGCacAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA0761

PA0761 is enriched for 9 functions in 3 categories.
Enrichment Table (9)
Function System
Aspartate oxidase cog/ cog
cytoplasm go/ cellular_component
electron transport go/ biological_process
L-aspartate oxidase activity go/ molecular_function
NAD biosynthetic process go/ biological_process
Alanine aspartate and glutamate metabolism kegg/ kegg pathway
Nicotinate and nicotinamide metabolism kegg/ kegg pathway
Metabolic pathways kegg/ kegg pathway
nadB tigr/ tigrfam
Module neighborhood information for PA0761

PA0761 has total of 39 gene neighbors in modules 94, 165
Gene neighbors (39)
Gene Common Name Description Module membership
PA0042 PA0042 hypothetical protein (NCBI) 143, 165
PA0066 PA0066 hypothetical protein (NCBI) 165, 293
PA0461 PA0461 hypothetical protein (NCBI) 165, 368
PA0761 nadB L-aspartate oxidase (NCBI) 94, 165
PA1004 nadA quinolinate synthetase (NCBI) 165, 251
PA1031 PA1031 hypothetical protein (NCBI) 94, 384
PA1520 PA1520 probable transcriptional regulator (NCBI) 143, 165
PA1532 dnaX DNA polymerase III subunits gamma and tau (NCBI) 94, 178
PA1614 gpsA NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (NCBI) 165, 198
PA1792 PA1792 UDP-2,3-diacylglucosamine hydrolase (NCBI) 165, 477
PA1842 PA1842 hypothetical protein (NCBI) 14, 94
PA1843 metH methionine synthase (NCBI) 14, 94
PA2117 PA2117 hypothetical protein (NCBI) 20, 165
PA2118 ada O6-methylguanine-DNA methyltransferase (NCBI) 165, 313
PA2613 PA2613 hypothetical protein (NCBI) 94, 390
PA2615 ftsK cell division protein FtsK (NCBI) 94, 296
PA2979 kdsB 3-deoxy-manno-octulosonate cytidylyltransferase (NCBI) 72, 165
PA2980 PA2980 hypothetical protein (NCBI) 143, 165
PA3004 PA3004 purine nucleoside phosphorylase (NCBI) 165, 220
PA3005 nagZ beta-hexosaminidase (NCBI) 72, 165
PA3046 PA3046 hypothetical protein (NCBI) 165, 541
PA3070 PA3070 hypothetical protein (NCBI) 60, 94
PA3084 PA3084 hypothetical protein (NCBI) 94, 195
PA3085 PA3085 hypothetical protein (NCBI) 94, 477
PA3088 ppnK inorganic polyphosphate/ATP-NAD kinase (NCBI) 94, 477
PA3286 PA3286 3-oxoacyl-(acyl carrier protein) synthase (NCBI) 165, 256
PA3496 PA3496 hypothetical protein (NCBI) 165, 541
PA3805 pilF type 4 fimbrial biogenesis protein PilF (NCBI) 94, 329
PA4360 PA4360 hypothetical protein (NCBI) 165, 224
PA4424 PA4424 hypothetical protein (NCBI) 94, 263
PA4473 PA4473 hypothetical protein (NCBI) 165, 477
PA4695 ilvH acetolactate synthase III small subunit (NCBI) 94, 543
PA4850 prmA ribosomal protein L11 methyltransferase (NCBI) 122, 165
PA5134 PA5134 probable carboxyl-terminal protease (NCBI) 94, 499
PA5143 hisB imidazoleglycerol-phosphate dehydratase (NCBI) 165, 544
PA5195 PA5195 probable heat shock protein (NCBI) 165, 523
PA5196 PA5196 hypothetical protein (NCBI) 165, 477
PA5285 PA5285 hypothetical protein (NCBI) 165, 541
PA5490 cc4 cytochrome c4 precursor (NCBI) 165, 327
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA0761
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend