Organism : Pseudomonas aeruginosa | Module List :
PA1768

hypothetical protein (NCBI)

CircVis
Functional Annotations (3)
Function System
Uncharacterized protein conserved in archaea cog/ cog
aspartic-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA1768
(Mouseover regulator name to see its description)

PA1768 is regulated by 49 influences and regulates 0 modules.
Regulators for PA1768 (49)
Regulator Module Operator
PA0179 69 tf
PA0456 69 tf
PA0535 69 tf
PA0652 69 tf
PA0765 69 tf
PA0873 69 tf
PA0979 69 tf
PA1504 69 tf
PA1544 69 tf
PA2586 69 tf
PA3002 69 tf
PA3135 69 tf
PA3458 69 tf
PA3583 69 tf
PA3804 69 tf
PA3921 69 tf
PA4057 69 tf
PA4094 69 tf
PA4238 69 tf
PA4269 69 tf
PA4270 69 tf
PA4275 69 tf
PA4279 69 tf
PA4451 69 tf
PA4745 69 tf
PA4755 69 tf
PA4890 69 tf
PA5288 69 tf
PA5403 69 tf
PA0456 398 tf
PA0652 398 tf
PA0961 398 tf
PA1504 398 tf
PA3583 398 tf
PA4052 398 tf
PA4057 398 tf
PA4269 398 tf
PA4275 398 tf
PA4279 398 tf
PA4451 398 tf
PA4462 398 tf
PA4745 398 tf
PA4755 398 tf
PA4853 398 tf
PA4890 398 tf
PA5105 398 tf
PA5116 398 tf
PA5337 398 tf
PA5344 398 tf

Warning: PA1768 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2970 2.50e+03 atAgaATG
Loader icon
2971 8.60e+03 TTATCcAGcAaCTaT
Loader icon
3620 2.00e+04 TCATTCTaAA
Loader icon
3621 3.20e+04 AATCTaAcAGTGAaT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA1768

PA1768 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Uncharacterized protein conserved in archaea cog/ cog
aspartic-type endopeptidase activity go/ molecular_function
proteolysis go/ biological_process
Module neighborhood information for PA1768

PA1768 has total of 29 gene neighbors in modules 69, 398
Gene neighbors (29)
Gene Common Name Description Module membership
PA0335 PA0335 hypothetical protein (NCBI) 86, 398
PA0342 thyA thymidylate synthase (NCBI) 111, 398
PA0595 ostA organic solvent tolerance protein OstA precursor (NCBI) 69, 186
PA0904 lysC aspartate kinase (NCBI) 69, 453
PA0963 aspS aspartyl-tRNA synthetase (NCBI) 69, 122
PA0964 PA0964 hypothetical protein (NCBI) 69, 186
PA0965 ruvC Holliday junction resolvase (NCBI) 59, 69
PA0966 ruvA Holliday junction DNA helicase motor protein (NCBI) 13, 69
PA0967 ruvB Holliday junction DNA helicase RuvB (NCBI) 69, 341
PA0968 PA0968 hypothetical protein (NCBI) 13, 69
PA0969 tolQ TolQ protein (NCBI) 69, 467
PA0971 tolA TolA protein (NCBI) 69, 341
PA0974 PA0974 hypothetical protein (NCBI) 69, 398
PA1009 PA1009 hypothetical protein (NCBI) 398, 435
PA1750 PA1750 phospho-2-dehydro-3-deoxyheptonate aldolase (NCBI) 122, 398
PA1768 PA1768 hypothetical protein (NCBI) 69, 398
PA1857 PA1857 hypothetical protein (NCBI) 86, 398
PA2042 PA2042 probable transporter (membrane subunit) (NCBI) 40, 398
PA3162 rpsA 30S ribosomal protein S1 (NCBI) 69, 186
PA3201 PA3201 putative intracellular septation protein (NCBI) 18, 398
PA3244 minD cell division inhibitor MinD (NCBI) 228, 398
PA3942 tesB acyl-CoA thioesterase II (NCBI) 100, 398
PA3987 leuS leucyl-tRNA synthetase (NCBI) 286, 398
PA4068 PA4068 probable epimerase (NCBI) 398, 442
PA4069 PA4069 hypothetical protein (NCBI) 281, 398
PA4640 mqoB malate:quinone oxidoreductase (NCBI) 398, 490
PA4846 aroQ1 3-dehydroquinate dehydratase (NCBI) 256, 398
PA5289 PA5289 hypothetical protein (NCBI) 86, 398
PA5362 PA5362 hypothetical protein (NCBI) 4, 398
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA1768
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend