Organism : Pseudomonas aeruginosa | Module List :
PA2721

hypothetical protein (NCBI)

CircVis
Functional Annotations (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA2721
(Mouseover regulator name to see its description)

PA2721 is regulated by 43 influences and regulates 0 modules.
Regulators for PA2721 (43)
Regulator Module Operator
PA0179 153 tf
PA0225 153 tf
PA0527 153 tf
PA0784 153 tf
PA1351 153 tf
PA1430 153 tf
PA1945 153 tf
PA2047 153 tf
PA3225 153 tf
PA3363 153 tf
PA3596 153 tf
PA4147 153 tf
PA4296 153 tf
PA4703 153 tf
PA4745 153 tf
PA5059 153 tf
PA5085 153 tf
PA5261 153 tf
PA5356 153 tf
PA5550 153 tf
PA0179 185 tf
PA0763 185 tf
PA0961 185 tf
PA1223 185 tf
PA1351 185 tf
PA1430 185 tf
PA1945 185 tf
PA2047 185 tf
PA2622 185 tf
PA2718 185 tf
PA2921 185 tf
PA3363 185 tf
PA3622 185 tf
PA4703 185 tf
PA4853 185 tf
PA5059 185 tf
PA5105 185 tf
PA5239 185 tf
PA5261 185 tf
PA5389 185 tf
PA5431 185 tf
PA5483 185 tf
PA5550 185 tf

Warning: PA2721 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3136 4.70e-01 AA..GacaGTtTTT
Loader icon
3137 3.60e+03 AAAAaTTATaTGA
Loader icon
3198 6.00e+03 TattGTTCTT
Loader icon
3199 1.80e+04 tGCcc.gcT.c.CtAcCc.aTG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA2721

PA2721 is enriched for 1 functions in 3 categories.
Enrichment Table (1)
Function System
Uncharacterized protein conserved in bacteria cog/ cog
Module neighborhood information for PA2721

PA2721 has total of 35 gene neighbors in modules 153, 185
Gene neighbors (35)
Gene Common Name Description Module membership
PA0007 PA0007 hypothetical protein (NCBI) 153, 382
PA0384 PA0384 hypothetical protein (NCBI) 185, 368
PA0447 gcdH glutaryl-CoA dehydrogenase (NCBI) 185, 523
PA0483 PA0483 probable acetyltransferase (NCBI) 153, 200
PA0565 PA0565 hypothetical protein (NCBI) 153, 205
PA0732 PA0732 hypothetical protein (NCBI) 153, 328
PA0810 PA0810 probable haloacid dehalogenase (NCBI) 185, 457
PA1167 PA1167 hypothetical protein (NCBI) 185, 349
PA1191 PA1191 hypothetical protein (NCBI) 153, 203
PA1289 PA1289 hypothetical protein (NCBI) 153, 159
PA1358 PA1358 hypothetical protein (NCBI) 185, 382
PA1523 xdhB xanthine dehydrogenase (NCBI) 153, 397
PA1524 xdhA xanthine dehydrogenase (NCBI) 153, 163
PA1737 PA1737 probable 3-hydroxyacyl-CoA dehydrogenase (NCBI) 185, 294
PA1765 PA1765 hypothetical protein (NCBI) 153, 443
PA1887 PA1887 hypothetical protein (NCBI) 153, 503
PA1888 PA1888 hypothetical protein (NCBI) 153, 503
PA1915 PA1915 hypothetical protein (NCBI) 84, 185
PA2047 PA2047 probable transcriptional regulator (NCBI) 141, 153
PA2072 PA2072 hypothetical protein (NCBI) 153, 349
PA2174 PA2174 hypothetical protein (NCBI) 133, 153
PA2706 PA2706 hypothetical protein (NCBI) 3, 185
PA2721 PA2721 hypothetical protein (NCBI) 153, 185
PA2864 PA2864 hypothetical protein (NCBI) 185, 209
PA2920 PA2920 probable chemotaxis transducer (NCBI) 153, 382
PA3399 PA3399 hypothetical protein (NCBI) 166, 185
PA4027 PA4027 hypothetical protein (NCBI) 185, 378
PA4624 PA4624 hypothetical protein (NCBI) 185, 268
PA4788 PA4788 hypothetical protein (NCBI) 185, 345
PA4829 lpd3 dihydrolipoamide dehydrogenase (NCBI) 28, 153
PA5056 phaC1 poly(3-hydroxyalkanoic acid) synthase 1 (NCBI) 64, 185
PA5057 phaD poly(3-hydroxyalkanoic acid) depolymerase (NCBI) 64, 185
PA5061 PA5061 hypothetical protein (NCBI) 166, 185
PA5299 PA5299 hypothetical protein (NCBI) 185, 328
PA5408 PA5408 hypothetical protein (NCBI) 185, 405
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA2721
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend