Organism : Pseudomonas aeruginosa | Module List :
PA2897

probable transcriptional regulator (NCBI)

CircVis
Functional Annotations (7)
Function System
Transcriptional regulators containing a DNA-binding HTH domain and an aminotransferase domain (MocR family) and their eukaryotic orthologs cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
biosynthetic process go/ biological_process
transferase activity, transferring nitrogenous groups go/ molecular_function
pyridoxal phosphate binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA2897
(Mouseover regulator name to see its description)

PA2897 is regulated by 40 influences and regulates 28 modules.
Regulators for PA2897 (40)
Regulator Module Operator
PA0179 63 tf
PA0601 63 tf
PA0763 63 tf
PA0780 63 tf
PA0815 63 tf
PA0942 63 tf
PA1283 63 tf
PA1484 63 tf
PA2020 63 tf
PA2047 63 tf
PA2622 63 tf
PA2713 63 tf
PA2718 63 tf
PA2897 63 tf
PA3225 63 tf
PA3622 63 tf
PA4021 63 tf
PA4269 63 tf
PA4769 63 tf
PA4778 63 tf
PA5255 63 tf
PA0610 376 tf
PA0763 376 tf
PA0784 376 tf
PA0815 376 tf
PA0942 376 tf
PA1283 376 tf
PA1754 376 tf
PA2849 376 tf
PA2897 376 tf
PA3007 376 tf
PA3587 376 tf
PA3689 376 tf
PA3973 376 tf
PA4787 376 tf
PA4878 376 tf
PA5253 376 tf
PA5308 376 tf
PA5374 376 tf
PA5438 376 tf
Regulated by PA2897 (28)
Module Residual Genes
10 0.53 20
51 0.54 25
54 0.40 15
55 0.48 19
63 0.52 21
66 0.43 19
70 0.56 30
87 0.55 26
102 0.36 11
133 0.44 13
159 0.53 19
160 0.42 13
208 0.54 24
209 0.52 22
248 0.56 24
250 0.40 18
376 0.54 22
382 0.48 20
389 0.60 24
420 0.56 21
427 0.41 13
431 0.44 19
436 0.53 18
455 0.53 22
457 0.56 26
492 0.39 11
503 0.40 12
555 0.36 11
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
2958 2.30e-01 AgGcTgCGggaacgcaTtTCG
Loader icon
2959 4.10e+01 gGcTtTCCttaCccG
Loader icon
3576 1.70e-01 ttT.tTGtAtACAa
Loader icon
3577 1.30e+03 AGCAAtaT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA2897

PA2897 is enriched for 7 functions in 3 categories.
Module neighborhood information for PA2897

PA2897 has total of 40 gene neighbors in modules 63, 376
Gene neighbors (40)
Gene Common Name Description Module membership
PA0469 PA0469 hypothetical protein (NCBI) 376, 457
PA0505 PA0505 hypothetical protein (NCBI) 63, 209
PA0862 PA0862 hypothetical protein (NCBI) 63, 141
PA0953 PA0953 probable thioredoxin (NCBI) 63, 208
PA0954 PA0954 probable acylphosphatase (NCBI) 63, 209
PA1029 PA1029 hypothetical protein (NCBI) 376, 460
PA1030 PA1030 hypothetical protein (NCBI) 376, 460
PA1053 PA1053 hypothetical protein (NCBI) 88, 376
PA1122 PA1122 probable peptide deformylase (NCBI) 63, 208
PA1505 moaA2 molybdopterin biosynthetic protein A2 (NCBI) 51, 63
PA1517 PA1517 hypothetical protein (NCBI) 243, 376
PA1518 PA1518 hypothetical protein (NCBI) 243, 376
PA1572 PA1572 hypothetical protein (NCBI) 361, 376
PA1573 PA1573 hypothetical protein (NCBI) 166, 376
PA1575 PA1575 hypothetical protein (NCBI) 63, 469
PA1576 PA1576 probable 3-hydroxyisobutyrate dehydrogenase (NCBI) 63, 245
PA1677 PA1677 hypothetical protein (NCBI) 2, 376
PA1729 PA1729 hypothetical protein (NCBI) 63, 475
PA1817 PA1817 hypothetical protein (NCBI) 63, 209
PA2559 PA2559 hypothetical protein (NCBI) 63, 208
PA2604 PA2604 hypothetical protein (NCBI) 376, 524
PA2756 PA2756 hypothetical protein (NCBI) 63, 457
PA2826 PA2826 probable glutathione peroxidase (NCBI) 79, 376
PA2827 PA2827 methionine sulfoxide reductase B (NCBI) 205, 376
PA2897 PA2897 probable transcriptional regulator (NCBI) 63, 376
PA2989 PA2989 hypothetical protein (NCBI) 63, 209
PA3017 PA3017 hypothetical protein (NCBI) 63, 376
PA3306 PA3306 hypothetical protein (NCBI) 63, 376
PA3307 PA3307 hypothetical protein (NCBI) 63, 475
PA3731 PA3731 hypothetical protein (NCBI) 376, 468
PA3732 PA3732 hypothetical protein (NCBI) 376, 468
PA3846 PA3846 hypothetical protein (NCBI) 63, 248
PA3865 PA3865 probable amino acid binding protein (NCBI) 79, 376
PA3916 moaE molybdopterin converting factor, large subunit (NCBI) 212, 376
PA3917 moaD molybdopterin converting factor, small subunit (NCBI) 212, 376
PA3918 moaC molybdenum cofactor biosynthesis protein C (NCBI) 212, 376
PA4535 PA4535 hypothetical protein (NCBI) 63, 513
PA4575 PA4575 hypothetical protein (NCBI) 63, 547
PA4657 PA4657 hypothetical protein (NCBI) 63, 328
PA5446 PA5446 hypothetical protein (NCBI) 224, 376
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA2897
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend