Organism : Pseudomonas aeruginosa | Module List :
PA4805

hypothetical protein (NCBI)

CircVis
Functional Annotations (3)
Function System
Adenosylmethionine-8-amino-7-oxononanoate aminotransferase cog/ cog
transaminase activity go/ molecular_function
pyridoxal phosphate binding go/ molecular_function
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA4805
(Mouseover regulator name to see its description)

PA4805 is regulated by 33 influences and regulates 0 modules.
Regulators for PA4805 (33)
Regulator Module Operator
PA0032 425 tf
PA0217 425 tf
PA0218 425 tf
PA0528 425 tf
PA1138 425 tf
PA1261 425 tf
PA2704 425 tf
PA3420 425 tf
PA3433 425 tf
PA3596 425 tf
PA3630 425 tf
PA3757 425 tf
PA4493 425 tf
PA5032 425 tf
PA0056 394 tf
PA0191 394 tf
PA0217 394 tf
PA0218 394 tf
PA0564 394 tf
PA0828 394 tf
PA1261 394 tf
PA1347 394 tf
PA1826 394 tf
PA2050 394 tf
PA3420 394 tf
PA3596 394 tf
PA3757 394 tf
PA3771 394 tf
PA3804 394 tf
PA4806 394 tf
PA5032 394 tf
PA5293 394 tf
PA5344 394 tf

Warning: PA4805 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3612 1.40e-12 aAcaacAAgAAcaA
Loader icon
3613 2.10e+04 atT.aTgAtTTTT
Loader icon
3670 7.40e-16 cgacAAcaAcaAgaa
Loader icon
3671 1.20e+03 AaaaAAtgtATtaaAAaTtt
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA4805

PA4805 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Adenosylmethionine-8-amino-7-oxononanoate aminotransferase cog/ cog
transaminase activity go/ molecular_function
pyridoxal phosphate binding go/ molecular_function
Module neighborhood information for PA4805

PA4805 has total of 47 gene neighbors in modules 394, 425
Gene neighbors (47)
Gene Common Name Description Module membership
PA0043 PA0043 hypothetical protein (NCBI) 20, 425
PA0058 PA0058 hypothetical protein (NCBI) 92, 425
PA0193 PA0193 hypothetical protein (NCBI) 337, 425
PA0209 PA0209 triphosphoribosyl-dephosphocoenzyme-A synthase (NCBI) 24, 394
PA0210 mdcC malonate decarboxylase subunit delta (NCBI) 24, 394
PA0213 PA0213 phosphoribosyl-dephospho-CoA transferase (NCBI) 24, 394
PA0217 PA0217 probable transcriptional regulator (NCBI) 394, 537
PA0218 PA0218 probable transcriptional regulator (NCBI) 236, 394
PA0219 PA0219 probable aldehyde dehydrogenase (NCBI) 335, 425
PA0220 PA0220 probable amino acid permease (NCBI) 425, 532
PA0221 PA0221 probable aminotransferase (NCBI) 425, 473
PA0240 PA0240 probable porin (NCBI) 394, 446
PA1025 PA1025 probable porin (NCBI) 36, 425
PA1143 PA1143 hypothetical protein (NCBI) 313, 425
PA1251 PA1251 probable chemotaxis transducer (NCBI) 394, 446
PA1310 phnW 2-aminoethylphosphonate:pyruvate aminotransferase (NCBI) 401, 425
PA1322 PA1322 probable TonB-dependent receptor (NCBI) 288, 394
PA1347 PA1347 probable transcriptional regulator (NCBI) 394, 546
PA1409 aphA acetylpolyamine aminohydrolase (NCBI) 104, 425
PA1412 PA1412 hypothetical protein (NCBI) 326, 394
PA1485 PA1485 probable amino acid permease (NCBI) 294, 394
PA1486 PA1486 hypothetical protein (NCBI) 294, 394
PA1502 gcl glyoxylate carboligase (NCBI) 373, 425
PA1503 PA1503 hypothetical protein (NCBI) 192, 425
PA1565 PA1565 probable oxidoreductase (NCBI) 310, 425
PA1917 PA1917 hypothetical protein (NCBI) 394, 439
PA1977 PA1977 hypothetical protein (NCBI) 211, 394
PA1992 PA1992 probable two-component sensor (NCBI) 425, 491
PA2714 PA2714 probable molybdopterin oxidoreductase (NCBI) 97, 425
PA2715 PA2715 probable ferredoxin (NCBI) 394, 425
PA2861 ligT 2'-5' RNA ligase (NCBI) 425, 498
PA3454 PA3454 probable acyl-CoA thiolase (NCBI) 206, 425
PA3592 PA3592 hypothetical protein (NCBI) 394, 463
PA3595 PA3595 probable major facilitator superfamily (MFS) transporter (NCBI) 408, 425
PA3681 PA3681 hypothetical protein (NCBI) 394, 432
PA3709 PA3709 probable major facilitator superfamily (MFS) transporter (NCBI) 401, 425
PA3959 PA3959 hypothetical protein (NCBI) 425, 550
PA4099 PA4099 hypothetical protein (NCBI) 197, 394
PA4177 PA4177 hypothetical protein (NCBI) 394, 401
PA4361 PA4361 probable oxidoreductase (NCBI) 187, 394
PA4805 PA4805 hypothetical protein (NCBI) 394, 425
PA4903 PA4903 probable major facilitator superfamily (MFS) transporter (NCBI) 394, 401
PA5099 PA5099 probable transporter (NCBI) 142, 425
PA5180 PA5180 hypothetical protein (NCBI) 152, 425
PA5181 PA5181 probable oxidoreductase (NCBI) 152, 425
PA5293 PA5293 probable transcriptional regulator (NCBI) 394, 536
PA5391 PA5391 hypothetical protein (NCBI) 267, 394
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA4805
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend