Organism : Pseudomonas aeruginosa | Module List :
PA5438

probable transcriptional regulator (NCBI)

CircVis
Functional Annotations (6)
Function System
Transcriptional regulators cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
sugar binding go/ molecular_function
intracellular go/ cellular_component
carbohydrate metabolic process go/ biological_process
regulation of transcription, DNA-dependent go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for PA5438
(Mouseover regulator name to see its description)

PA5438 is regulated by 27 influences and regulates 37 modules.
Regulators for PA5438 (27)
Regulator Module Operator
PA0376 251 tf
PA0424 251 tf
PA0762 251 tf
PA1520 251 tf
PA1853 251 tf
PA2123 251 tf
PA2692 251 tf
PA3034 251 tf
PA3266 251 tf
PA4451 251 tf
PA4745 251 tf
PA4764 251 tf
PA5337 251 tf
PA5438 251 tf
PA0125 296 tf
PA1097 296 tf
PA1099 296 tf
PA1455 296 tf
PA1526 296 tf
PA1776 296 tf
PA2859 296 tf
PA3574 296 tf
PA4052 296 tf
PA4275 296 tf
PA4279 296 tf
PA5337 296 tf
PA5438 296 tf
Regulated by PA5438 (37)
Module Residual Genes
8 0.59 25
37 0.48 16
45 0.44 18
66 0.43 19
76 0.46 21
86 0.59 20
100 0.59 23
115 0.41 15
126 0.56 17
149 0.33 15
188 0.49 22
195 0.57 21
212 0.61 30
215 0.53 19
231 0.51 26
246 0.54 30
251 0.53 27
261 0.53 16
274 0.51 18
276 0.53 12
296 0.55 23
348 0.50 30
352 0.43 9
369 0.37 15
376 0.54 22
379 0.36 14
383 0.67 8
389 0.60 24
410 0.49 30
412 0.48 18
413 0.37 9
424 0.43 13
440 0.43 14
460 0.52 19
477 0.58 23
490 0.52 19
530 0.44 16
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
3330 3.10e+02 AtACTgCaAAccgTC
Loader icon
3331 3.10e+04 aAAAgcCcGatCctAcccgaa
Loader icon
3420 1.60e-01 AaaAgcCGcCt
Loader icon
3421 7.60e+02 AtgAAgcgcTtCAA
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for PA5438

PA5438 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Transcriptional regulators cog/ cog
sequence-specific DNA binding transcription factor activity go/ molecular_function
sugar binding go/ molecular_function
intracellular go/ cellular_component
carbohydrate metabolic process go/ biological_process
regulation of transcription, DNA-dependent go/ biological_process
Module neighborhood information for PA5438

PA5438 has total of 48 gene neighbors in modules 251, 296
Gene neighbors (48)
Gene Common Name Description Module membership
PA0012 PA0012 hypothetical protein (NCBI) 195, 296
PA0805 PA0805 hypothetical protein (NCBI) 251, 460
PA1004 nadA quinolinate synthetase (NCBI) 165, 251
PA1104 fliI flagellum-specific ATP synthase (NCBI) 129, 296
PA1117 PA1117 hypothetical protein (NCBI) 41, 296
PA1296 PA1296 probable 2-hydroxyacid dehydrogenase (NCBI) 251, 460
PA1440 PA1440 hypothetical protein (NCBI) 41, 251
PA1442 PA1442 flagellar protein (NCBI) 129, 296
PA1443 fliM flagellar motor switch protein (NCBI) 129, 296
PA1444 fliN flagellar motor switch protein (NCBI) 129, 296
PA1445 fliO flagellar protein FliO (NCBI) 129, 296
PA1446 fliP flagellar biosynthesis protein (NCBI) 129, 296
PA1447 fliQ flagellar biosynthesis protein (NCBI) 129, 296
PA1448 fliR flagellar biosynthesis protein (NCBI) 296, 461
PA2583 PA2583 probable sensor/response regulator hybrid (NCBI) 296, 321
PA2615 ftsK cell division protein FtsK (NCBI) 94, 296
PA2974 PA2974 probable hydrolase (NCBI) 261, 296
PA2975 rluC ribosomal large subunit pseudouridine synthase C (NCBI) 261, 296
PA3113 trpF N-(5'-phosphoribosyl)anthranilate isomerase (NCBI) 251, 309
PA3266 capB cold acclimation protein B (NCBI) 210, 251
PA3270 PA3270 hypothetical protein (NCBI) 251, 455
PA3524 gloA1 lactoylglutathione lyase (NCBI) 296, 541
PA3531 bfrB bacterioferritin (NCBI) 296, 327
PA3664 PA3664 hypothetical protein (NCBI) 251, 412
PA3737 dsbC thiol:disulfide interchange protein DsbC (NCBI) 103, 251
PA4325 PA4325 hypothetical protein (NCBI) 251, 455
PA4378 inaA InaA protein (NCBI) 251, 455
PA4379 PA4379 hypothetical protein (NCBI) 251, 455
PA4572 fklB peptidyl-prolyl cis-trans isomerase FklB (NCBI) 232, 251
PA4752 ftsJ cell division protein FtsJ (NCBI) 232, 296
PA4764 fur ferric uptake regulation protein (NCBI) 251, 455
PA4765 omlA Outer membrane lipoprotein OmlA precursor (NCBI) 228, 251
PA4767 PA4767 hypothetical protein (NCBI) 139, 251
PA4963 PA4963 hypothetical protein (NCBI) 41, 251
PA5000 PA5000 probable glycosyl transferase (NCBI) 59, 296
PA5047 PA5047 hypothetical protein (NCBI) 195, 296
PA5073 PA5073 hypothetical protein (NCBI) 187, 251
PA5176 PA5176 hypothetical protein (NCBI) 139, 251
PA5184 PA5184 chorismate mutase (NCBI) 178, 251
PA5240 trxA thioredoxin (NCBI) 210, 251
PA5247 PA5247 hypothetical protein (NCBI) 251, 296
PA5259 hemD uroporphyrinogen-III synthetase (NCBI) 229, 296
PA5260 hemC porphobilinogen deaminase (NCBI) 261, 296
PA5347 PA5347 hypothetical protein (NCBI) 143, 251
PA5363 PA5363 hypothetical protein (NCBI) 139, 251
PA5371 PA5371 hypothetical protein (NCBI) 243, 251
PA5438 PA5438 probable transcriptional regulator (NCBI) 251, 296
PA5515 PA5515 hypothetical protein (NCBI) 8, 251
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for PA5438
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend