Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_0489

GntR family transcriptional regulator (NCBI)

CircVis
Functional Annotations (6)
Function System
Transcriptional regulators cog/ cog
fatty-acyl-CoA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
regulation of fatty acid metabolic process go/ biological_process
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_0489
(Mouseover regulator name to see its description)

RSP_0489 is regulated by 17 influences and regulates 13 modules.
Regulators for RSP_0489 (17)
Regulator Module Operator
RSP_0316 295 tf
RSP_0443 295 tf
RSP_0489 295 tf
RSP_0601 295 tf
RSP_1092 295 tf
RSP_1990 295 tf
RSP_2200 295 tf
RSP_2324 295 tf
RSP_2719 295 tf
RSP_2950 295 tf
RSP_0443 301 tf
RSP_0489 301 tf
RSP_1092 301 tf
RSP_2324 301 tf
RSP_2572 301 tf
RSP_2719 301 tf
RSP_2850 301 tf
Regulated by RSP_0489 (13)
Module Residual Genes
24 0.42 23
63 0.58 18
100 0.56 23
123 0.43 14
199 0.52 19
245 0.61 23
255 0.28 17
266 0.40 21
279 0.52 28
295 0.38 17
301 0.41 23
309 0.48 27
337 0.55 23
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
8304 4.60e-04 TGAaccaaACtacCaTaTTA
Loader icon
8305 1.10e-02 CGGCaGaAttCCAcCcaaAAA
Loader icon
8316 1.50e-04 tgaaGCATACTaGCATATTAGTca
Loader icon
8317 1.70e+00 TTatcaGaGtCAttC
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_0489

RSP_0489 is enriched for 6 functions in 3 categories.
Enrichment Table (6)
Function System
Transcriptional regulators cog/ cog
fatty-acyl-CoA binding go/ molecular_function
sequence-specific DNA binding transcription factor activity go/ molecular_function
intracellular go/ cellular_component
regulation of transcription, DNA-dependent go/ biological_process
regulation of fatty acid metabolic process go/ biological_process
Module neighborhood information for RSP_0489

RSP_0489 has total of 34 gene neighbors in modules 295, 301
Gene neighbors (34)
Gene Common Name Description Module membership
RSP_0480 uxuB D-mannonate oxidoreductase (NCBI) 301, 337
RSP_0481 RSP_0481 possible 2-deoxy-D-gluconate 3-dehydrogenase (NCBI) 253, 301
RSP_0482 kduI 4-deoxy-L-threo-5-hexosulose-uronate ketol-isomerase (NCBI) 24, 301
RSP_0483 RSP_0483 hypothetical protein (NCBI) 295, 301
RSP_0484 RSP_0484 TRAP-T family transporter, DctM (12 TMs) subunit (NCBI) 295, 301
RSP_0485 RSP_0485 TRAP-T family transporter, DctQ (4 TMs) subunit (NCBI) 295, 301
RSP_0487 RSP_0487 TRAP-T family transporter, DctP (periplasmic binding) subunit (NCBI) 295, 301
RSP_0488 uxaC putative glucuronate isomerase (NCBI) 295, 301
RSP_0489 RSP_0489 GntR family transcriptional regulator (NCBI) 295, 301
RSP_0773 RSP_0773 mannonate dehydratase (NCBI) 24, 301
RSP_0904 sitA ABC Mn+2/Fe+2 transporter, periplasmic substrate-binding protein SitA (NCBI) 266, 301
RSP_0905 sitB ABC Mn+2/Fe+2 transporter, ATPase subunit SitB (NCBI) 266, 301
RSP_0906 sitC ABC Mn+2/Fe+2 transporter, inner membrane subunit SitC (NCBI) 266, 301
RSP_0908 sitD ABC Mn+2/Fe+2 transporter, inner membrane subunit SitD (NCBI) 266, 301
RSP_1088 RSP_1088 hypothetical protein (NCBI) 232, 295
RSP_1089 RSP_1089 sugar/cation symporter, GPH family (NCBI) 232, 295
RSP_1090 RSP_1090 Putative cyclopropane/cyclopropene fatty acid synthesis protein (NCBI) 232, 295
RSP_1091 RSP_1091 Putative cyclopropane/cyclopropene fatty acid synthesis protein, flavin amine oxidase (NCBI) 232, 295
RSP_1092 rpoE sigma24, RpoE (NCBI) 232, 295
RSP_1093 chrR Anti-sigma factor ChrR (NCBI) 232, 295
RSP_1766 pykA Pyruvate kinase (NCBI) 203, 301
RSP_2645 eda KDPG/KHG bifunctional aldolase (NCBI) 231, 301
RSP_2734 zwf Glucose-6-phosphate dehydrogenase (NCBI) 24, 301
RSP_2735 pgl 6-phosphogluconolactonase (NCBI) 24, 301
RSP_2736 pgi Phosphoglucose isomerase (PGI) glucose-6-phosphate isomerase (NCBI) 24, 301
RSP_2779 catA Catalase (NCBI) 55, 301
RSP_3237 lguL Lactoylglutathione lyase (NCBI) 7, 301
RSP_3318 acrB Cation/multidrug efflux pump, RND family (NCBI) 301, 316
RSP_3321 acrA Cation/multidrug efflux pump, membrane-fusion protein (NCBI) 301, 316
RSP_6008 RSP_6008 hypothetical protein (NCBI) 295, 352
RSP_6026 RSP_6026 putative acetyltransferase (NCBI) 295, 321
RSP_6067 RSP_6067 hypothetical protein (NCBI) 275, 295
RSP_6075 RSP_6075 hypothetical protein (NCBI) 131, 295
RSP_6232 RSP_6232 hypothetical protein (NCBI) 131, 295
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_0489
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend