Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_1547

probable bacterioferritin-associated ferredoxin (NCBI)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_1547
(Mouseover regulator name to see its description)

RSP_1547 is regulated by 16 influences and regulates 0 modules.
Regulators for RSP_1547 (16)
Regulator Module Operator
RSP_0443 161 tf
RSP_0601 161 tf
RSP_1032 161 tf
RSP_1092 161 tf
RSP_2130 161 tf
RSP_2351 161 tf
RSP_2410 161 tf
RSP_2533 161 tf
RSP_3179 161 tf
RSP_0443 232 tf
RSP_0601 232 tf
RSP_1092 232 tf
RSP_1790 232 tf
RSP_1866 232 tf
RSP_2572 232 tf
RSP_2939 232 tf

Warning: RSP_1547 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
8042 1.60e-07 AgattT.TtgagTcATatcAtAt
Loader icon
8043 3.90e+00 cTgaTA.Gg.ataA
Loader icon
8182 8.30e-09 tt.c.GAt.GAaa.actCagggat
Loader icon
8183 8.30e-01 cgGgCaGtCgaGAtcaggCgg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_1547

Warning: No Functional annotations were found!

Module neighborhood information for RSP_1547

RSP_1547 has total of 42 gene neighbors in modules 161, 232
Gene neighbors (42)
Gene Common Name Description Module membership
RSP_0124 RSP_0124 hypothetical protein (NCBI) 161, 309
RSP_0244 RSP_0244 Predicted glutamine amidotransferases (NCBI) 46, 161
RSP_0442 RSP_0442 putative aminotransferase (NCBI) 159, 161
RSP_0443 RSP_0443 Rrf2 family transcriptional regulator (NCBI) 161, 289
RSP_0525 RSP_0525 hypothetical protein (NCBI) 24, 161
RSP_0601 rpoH2 sigma factor RpoH2 (Sigma-32 group (NCBI) 58, 161
RSP_0850 RSP_0850 conserved hypothetical transmembrane protein (NCBI) 161, 287
RSP_0920 exbB Biopolymer transport protein, ExbB (NCBI) 24, 232
RSP_0921 exbD biopolymer transport protein, ExbD (NCBI) 24, 232
RSP_0922 RSP_0922 Putative TonB protein (NCBI) 24, 232
RSP_1088 RSP_1088 hypothetical protein (NCBI) 232, 295
RSP_1089 RSP_1089 sugar/cation symporter, GPH family (NCBI) 232, 295
RSP_1090 RSP_1090 Putative cyclopropane/cyclopropene fatty acid synthesis protein (NCBI) 232, 295
RSP_1091 RSP_1091 Putative cyclopropane/cyclopropene fatty acid synthesis protein, flavin amine oxidase (NCBI) 232, 295
RSP_1092 rpoE sigma24, RpoE (NCBI) 232, 295
RSP_1093 chrR Anti-sigma factor ChrR (NCBI) 232, 295
RSP_1409 RSP_1409 Beta-Ig-H3/Fasciclin (NCBI) 2, 161
RSP_1543 RSP_1543 hypothetical protein (NCBI) 232, 289
RSP_1544 RSP_1544 hypothetical signal peptide protein (NCBI) 232, 289
RSP_1545 RSP_1545 Probable thiol oxidoreductase with 2 cytochrome c heme-binding sites (NCBI) 161, 289
RSP_1546 bfr Bacterioferritin (NCBI) 161, 232
RSP_1547 RSP_1547 probable bacterioferritin-associated ferredoxin (NCBI) 161, 232
RSP_1548 RSP_1548 putative iron-regulated protein (NCBI) 24, 232
RSP_1825 tldD probable modulator of DNA gyrase (NCBI) 161, 186
RSP_1852 RSP_1852 hypothetical protein (NCBI) 46, 161
RSP_1948 RSP_1948 Protein of unknown function, HesB/YadR/YfhF (NCBI) 161, 309
RSP_1949 RSP_1949 hypothetical protein (NCBI) 161, 309
RSP_2359 RSP_2359 hypothetical protein (NCBI) 161, 331
RSP_2360 RSP_2360 putative head portal protein, HK97 family (NCBI) 161, 331
RSP_2361 RSP_2361 putative integrase/resolvase recombinase protein phage-related integrase (NCBI) 93, 161
RSP_2388 RSP_2388 hypothetical protein (NCBI) 161, 210
RSP_2783 lipA lipoic acid synthetase (NCBI) 161, 309
RSP_2913 RSP_2913 ABC Fe+3 siderophore transporter, periplasmic substrate-binding protein (NCBI) 55, 232
RSP_3078 RSP_3078 hypothetical protein (NCBI) 161, 232
RSP_3079 RSP_3079 ABC Fe+3 siderophore transporter, periplasmic substrate-binding protein (NCBI) 55, 232
RSP_3117 RSP_3117 hypothetical protein (NCBI) 161, 331
RSP_3141 RSP_3141 hypothetical protein (NCBI) 161, 280
RSP_3142 RSP_3142 Na+/solute symporter (NCBI) 161, 280
RSP_3567 znuB ABC zinc tranporter, inner membrane subunit ZnuB (NCBI) 161, 331
RSP_3568 znuC ABC zinc transporter, ATPase subunit ZnuC (NCBI) 161, 331
RSP_3569 zur Zinc-uptake regulator, Zur (NCBI) 161, 331
RSP_3571 znuA ABC zinc transporter, periplasmic binding protein ZnuA (NCBI) 161, 331
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_1547
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend