Organism : Rhodobacter sphaeroides 2.4.1 | Module List:
Module 14 Profile

GeneModule member RegulatorRegulator MotifMotif
Network Help

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges.

Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif
Regulators for Module 14

There are 19 regulatory influences for Module 14

Regulator Table (19)
Regulator Name Type
RSP_0386 tf
RSP_3001 tf
RSP_1660 tf
RSP_2840 tf
RSP_2324 tf
RSP_2850 tf
RSP_3464 tf
RSP_2079 tf
RSP_2011 tf
RSP_0601 tf
RSP_3203 tf
RSP_3684 tf
RSP_1034 tf
RSP_1225 tf
RSP_0457 tf
RSP_2939 tf
RSP_2965 tf
RSP_3052 tf
RSP_1607 tf

Regulator Help

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type.

tf: Transcription factor

ef: Environmental factor

combiner: Combinatorial influence of a tf or an ef through logic gate. Table is sortable by clicking on the arrows next to column headers.

Motif information (de novo identified motifs for modules)

There are 2 motifs predicted.

Motif Table (2)
Motif Id e-value Consensus Motif Logo
7748 3.00e-08 aATttAgatttacgaa.c.tt
Loader icon
7749 6.30e+00 TA.ttC.acATgaCgAaTT
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment

Regulon 14 is enriched for following functions.

Functions Help

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Members for Module 14

There are 31 genes in Module 14

Gene Member Table (31)
Name Common name Type Gene ID Chromosome Start End Strand Description TF
RSP_0116 RSP_0116 CDS None chromosome 1 1829852 1830259 - hypothetical protein (NCBI) False
RSP_0221 RSP_0221 CDS None chromosome 1 1936160 1938697 + plasma membrane H+-transporting two-sector ATPase, C subunit (NCBI) False
RSP_0381 RSP_0381 CDS None chromosome 1 2112314 2112763 - hypothetical protein (NCBI) False
RSP_0621 RSP_0621 CDS None chromosome 1 2356523 2361670 + Possible DNA helicase (NCBI) False
RSP_0961 MeaA CDS None chromosome 1 2719198 2721156 + similiar to methylmalonyl-CoA mutases (NCBI) False
RSP_2011 RSP_2011 CDS None chromosome 1 612424 612918 - putative transcription elongation factor (NCBI) True
RSP_2291 RSP_2291 CDS None chromosome 1 913317 913817 + hypothetical protein (NCBI) False
RSP_2807 RSP_2807 CDS None chromosome 1 1507335 1507973 + putative cytochrome b (NCBI) False
RSP_2808 RSP_2808 CDS None chromosome 1 1507076 1507330 + hypothetical protein (NCBI) False
RSP_2991 RSP_2991 CDS None chromosome 1 1684120 1684452 - hypothetical protein (NCBI) False
RSP_2996 RSP_2996 CDS None chromosome 1 1692961 1693485 - putative prohead protease (NCBI) False
RSP_2997 RSP_2997 CDS None chromosome 1 1693482 1694708 - putative head portal protein (NCBI) False
RSP_2998 RSP_2998 CDS None chromosome 1 1694748 1696334 - Hypothetical Terminase large subunit (NCBI) False
RSP_2999 RSP_2999 CDS None chromosome 1 1696321 1696761 - hypothetical protein (NCBI) False
RSP_3000 RSP_3000 CDS None chromosome 1 1697025 1697336 - hypothetical protein (NCBI) False
RSP_3001 RSP_3001 CDS None chromosome 1 1697390 1697896 - Possible Endonuclease (NCBI) True
RSP_3119 RSP_3119 CDS None chromosome 2 164919 165494 - conserved hypothetical protein / putative esterase (NCBI) False
RSP_3175 RSP_3175 CDS None chromosome 2 228091 228516 - hypothetical protein (NCBI) False
RSP_3203 RSP_3203 CDS None chromosome 2 256635 257666 + transcriptional regulator, AraC family (NCBI) True
RSP_3240 RSP_3240 CDS None chromosome 2 297131 298525 - periplasmic sensor signal transduction histidine kinase (NCBI) False
RSP_3252 RSP_3252 CDS None chromosome 2 310159 311937 - ABC peptide transporter, fused ATPase domains (NCBI) False
RSP_3264 RSP_3264 CDS None chromosome 2 320945 321376 - probable c-type cytochrome (NCBI) False
RSP_3312 RSP_3312 CDS None chromosome 2 374858 375559 - hypothetical protein (NCBI) False
RSP_3343 RSP_3343 CDS None chromosome 2 406990 408096 + putative glycosyl transferase (NCBI) False
RSP_3428 RSP_3428 CDS None chromosome 2 497401 499359 + hypothetical protein (NCBI) False
RSP_3434 RSP_3434 CDS None chromosome 2 505826 506194 - hypothetical protein (NCBI) False
RSP_3544 RSP_3544 CDS None chromosome 2 634618 634920 + hypothetical protein (NCBI) False
RSP_3573 gvpA CDS None chromosome 2 668346 668558 + Gas vesicle protein GVPa (NCBI) False
RSP_3753 RSP_3753 CDS None chromosome 2 878405 878743 - hypothetical protein (NCBI) False
RSP_4294 RSP_4294 rRNA None chromosome 1 1 1464 + 16S ribosomal RNA (NCBI) False
RSP_4295 RSP_4295 rRNA None chromosome 1 2130 5012 + 23S ribosomal RNA (NCBI) False

Genes Help

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Help

What is a module?

Regulatory units (modules) in the Network Portal are based on the network inference algorithm used. For the current version, modules are based on cMonkey modules and Inferelator regulatory influences on these modules. More specifically, module refers to set of genes that are conditionally co-regulated under subset of the conditions. Identification of modules integrates co-expression, de-novo motif identification, and other functional associations such as operon information and protein-protein interactions.

Module Overview

The landing module page shows quick summary info including co-expression profiles, de-novo identified motifs, and transcription factors and/or environmental factors as regulatory influences. It also includes module residual, motif e-values, conditions and links to other resources such as NCBI and Microbesonline. . If a transcription factor is included in the manually curated RegPrecise database, further information from RegPrecise is shown, allowing users to perform comparative analysis.

Expression Profiles

Expression profiles is a plot of the expression ratios (log10) of the module's genes, over all subset of the conditions included in the module. The X-axis represent conditions and the Y-axis represents log10 expression ratios. Each gene is plotted as line plot with different colors. Colored legend for the lines are presented under the plot. This plot is dynamic. Clicking on the gene names in the legend will show/hide the plot for that particular gene. A tooltip will show expression ratio information if you mouseover the lines in the plot.

Motif Locations

Location of the Identified motifs for the module in the upstream regions of the member genes are shown under the expression profiles plot. This plot shows the diagram of the upstream positions of the motifs, colored red and green for motifs #1, and 2, respectively. Intensity of the color is proportional to the significance of the occurence of that motif at a given location. Motifs on the forward and reverse strand are represented over and under the line respectively.

Network

A network view of the module is created using cytoscapeWeb and enables dynamic, interactive exploration of the module properties. In this view, module member genes, motifs, and regulatory influences are represented as peripheral nodes connected to core module node via edges. Module members are green circles, regulators are red triangles and motifs are blue diamonds. Selection of a node gives access to detailed information in a pop-up window, which allows dragging and pinning to compare multiple selections. Selecting module members will show information about the selected gene such as name, species and fucntions. Motif selection will show motif logo image and e-values. Bicluster selction will show expression profile and summary statistics for the module.

GeneModule member RegulatorRegulator MotifMotif

Regulators

For each module, single or AND logic connected regulatory influences are listed under the regulators tab. These regulatory influences are identified by Inferelator. Table shows name of the regulator and its type. tf: Transcription factor, ef: Environmental factor and combiner:Combinatorial influence of a tf or an ef through logic gate. Tabel is sortable by clicking on the arrows next to column headers.

Motifs

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Functions

Biological networks contain sets of regulatory units called functional modules that together play a role in regulation of specific functional processes. Connections between different modules in the network can help identify regulatory relationships such as hierarchy and epistasis. In addition, associating functions with modules enables putative assignment of functions to hypothetical genes. It is therefore essential to identify functional enrichment of modules within the regulatory network.

Functional annotations from single sources are often either not available or not complete. Therefore, we integrated KEGG pathway, Gene Ontology, TIGRFam and COG information as references for functional enrichment analysis.

We use hypergeometric p-values to identify significant overlaps between co-regulated module members and genes assigned to a particular functional annotation category. P-values are corrected for multiple comparisons by using Benjamini-Hochberg correction and filtered for p-values ≤ 0.05.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Genes

Gene member table shows all the genes included in the module. Listed attributes are;

  1. Name: Gene name or Locus tag
  2. Common Name: Gene short name
  3. Type: Type of the feature, usually CDS.
  4. Gene ID: Link to NCBI Gene ID
  5. Chromosome: Chromosome name from annotation file
  6. Start/End:Feature start and end coordinates
  7. Strand: strand of the gene
  8. Description: Description of the gene from annotation file
  9. TF: If the gene is a Transcription Factor or not.

If you are browsing the Network Portal by using Gaggle/Firegoose, firegoose plugin will capture the NameList of the gene members. Captured names can be saved into your Workspace by clicking on "Capture" in the firegoose toolbar or can be directly sent other desktop and web resources by using "Broadcast" option.

Social

You can start a conversation about this module or join the existing discussion by adding your comments. In order to be able to add your comments you need to sign in by using any of the following services;Disqus, Google, Facebook or Twitter. For full compatibility with other network portal features, we recommend using your Google ID.

Definitions

Residual: is a measure of bicluster quality. Mean bicluster residual is smaller when the expression profile of the genes in the module is "tighter". So smaller residuals are usually indicative of better bicluster quality.

Expression Profile: is a preview of the expression profiles of all the genes under subset of conditions included in the module. Tighter expression profiles are usually indicative of better bicluster quality.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Genes: Number of genes included in the module.

Functions: We identify functional enrichment of each module by camparing to different functional categories such as KEGG, COG, GO etc. by using hypergeometric function. If the module is significantly enriched for any of the functions, this column will list few of the these functions as an overview. Full list of functions is available upon visiting the module page under the Functions tab.