Organism : Rhodobacter sphaeroides 2.4.1 | Module List :
RSP_2807

putative cytochrome b (NCBI)

CircVis
Functional Annotations (3)
Function System
Cytochrome b cog/ cog
electron transport go/ biological_process
integral to membrane go/ cellular_component
GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for RSP_2807
(Mouseover regulator name to see its description)

RSP_2807 is regulated by 28 influences and regulates 0 modules.
Regulators for RSP_2807 (28)
Regulator Module Operator
RSP_0386 14 tf
RSP_0457 14 tf
RSP_0601 14 tf
RSP_1034 14 tf
RSP_1225 14 tf
RSP_1607 14 tf
RSP_1660 14 tf
RSP_2011 14 tf
RSP_2079 14 tf
RSP_2324 14 tf
RSP_2840 14 tf
RSP_2850 14 tf
RSP_2939 14 tf
RSP_2965 14 tf
RSP_3001 14 tf
RSP_3052 14 tf
RSP_3203 14 tf
RSP_3464 14 tf
RSP_3684 14 tf
RSP_1225 229 tf
RSP_1231 229 tf
RSP_1435 229 tf
RSP_1952 229 tf
RSP_2494 229 tf
RSP_2533 229 tf
RSP_2681 229 tf
RSP_2889 229 tf
RSP_3621 229 tf

Warning: RSP_2807 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
7748 3.00e-08 aATttAgatttacgaa.c.tt
Loader icon
7749 6.30e+00 TA.ttC.acATgaCgAaTT
Loader icon
8176 2.00e-05 AAacaGAAGgTCaAaaGagat
Loader icon
8177 1.40e-06 agTTGcGActCcgAcGAaACTG
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for RSP_2807

RSP_2807 is enriched for 3 functions in 3 categories.
Enrichment Table (3)
Function System
Cytochrome b cog/ cog
electron transport go/ biological_process
integral to membrane go/ cellular_component
Module neighborhood information for RSP_2807

RSP_2807 has total of 53 gene neighbors in modules 14, 229
Gene neighbors (53)
Gene Common Name Description Module membership
RSP_0116 RSP_0116 hypothetical protein (NCBI) 14, 229
RSP_0118 RSP_0118 Cytochrome c oxidase, subunit IIc (NCBI) 77, 229
RSP_0221 RSP_0221 plasma membrane H+-transporting two-sector ATPase, C subunit (NCBI) 14, 342
RSP_0381 RSP_0381 hypothetical protein (NCBI) 14, 43
RSP_0621 RSP_0621 Possible DNA helicase (NCBI) 14, 36
RSP_0961 MeaA similiar to methylmalonyl-CoA mutases (NCBI) 14, 253
RSP_1370 RSP_1370 Alpha amylase, catalytic subdomain (NCBI) 124, 229
RSP_1471 RSP_1471 hypothetical protein (NCBI) 140, 229
RSP_1796 sodC Putative Copper/Zinc superoxide dismutase (NCBI) 150, 229
RSP_1822 RSP_1822 hypothetical protein (NCBI) 229, 238
RSP_1951 RSP_1951 hypothetical protein (NCBI) 56, 229
RSP_1952 RSP_1952 Cold-shock DNA-binding domain protein (NCBI) 56, 229
RSP_2011 RSP_2011 putative transcription elongation factor (NCBI) 14, 128
RSP_2021 shp Mono-heme class I cytochrome c (NCBI) 150, 229
RSP_2022 RSP_2022 Cytochrome b/diheme cytochrome c hybrid protein (NCBI) 103, 229
RSP_2023 RSP_2023 hypothetical protein (NCBI) 229, 304
RSP_2024 cspA Cold shock protein cspA (NCBI) 56, 229
RSP_2219 RSP_2219 putative lipid A biosynthesis lauroyl acyltransferase (NCBI) 183, 229
RSP_2291 RSP_2291 hypothetical protein (NCBI) 14, 370
RSP_2751 RSP_2751 hypothetical protein (NCBI) 105, 229
RSP_2807 RSP_2807 putative cytochrome b (NCBI) 14, 229
RSP_2808 RSP_2808 hypothetical protein (NCBI) 14, 229
RSP_2871 aglG ABC alpha-glucoside transporter, inner membrane subunit AglG (NCBI) 229, 235
RSP_2874 RSP_2874 Putative Beta-glucosidase A (NCBI) 229, 233
RSP_2889 RSP_2889 Transcriptional regulator (NCBI) 185, 229
RSP_2890 RSP_2890 Copper-translocating P-type ATPase (NCBI) 185, 229
RSP_2891 RSP_2891 Putative copper chaperone (NCBI) 185, 229
RSP_2964 RSP_2964 hypothetical protein (NCBI) 229, 244
RSP_2991 RSP_2991 hypothetical protein (NCBI) 14, 189
RSP_2996 RSP_2996 putative prohead protease (NCBI) 14, 235
RSP_2997 RSP_2997 putative head portal protein (NCBI) 14, 235
RSP_2998 RSP_2998 Hypothetical Terminase large subunit (NCBI) 14, 189
RSP_2999 RSP_2999 hypothetical protein (NCBI) 14, 189
RSP_3000 RSP_3000 hypothetical protein (NCBI) 14, 325
RSP_3001 RSP_3001 Possible Endonuclease (NCBI) 14, 189
RSP_3119 RSP_3119 conserved hypothetical protein / putative esterase (NCBI) 14, 38
RSP_3175 RSP_3175 hypothetical protein (NCBI) 14, 19
RSP_3203 RSP_3203 transcriptional regulator, AraC family (NCBI) 14, 19
RSP_3240 RSP_3240 periplasmic sensor signal transduction histidine kinase (NCBI) 14, 19
RSP_3252 RSP_3252 ABC peptide transporter, fused ATPase domains (NCBI) 14, 325
RSP_3264 RSP_3264 probable c-type cytochrome (NCBI) 14, 27
RSP_3312 RSP_3312 hypothetical protein (NCBI) 14, 188
RSP_3343 RSP_3343 putative glycosyl transferase (NCBI) 14, 168
RSP_3428 RSP_3428 hypothetical protein (NCBI) 14, 116
RSP_3434 RSP_3434 hypothetical protein (NCBI) 14, 144
RSP_3543 RSP_3543 Probable type I restriction-modification system restriction subunit (NCBI) 191, 229
RSP_3544 RSP_3544 hypothetical protein (NCBI) 14, 342
RSP_3573 gvpA Gas vesicle protein GVPa (NCBI) 14, 27
RSP_3621 RSP_3621 Cold-shock DNA-binding protein (NCBI) 56, 229
RSP_3622 RSP_3622 hypothetical protein (NCBI) 56, 229
RSP_3753 RSP_3753 hypothetical protein (NCBI) 14, 183
RSP_4294 RSP_4294 16S ribosomal RNA (NCBI) 14, 43
RSP_4295 RSP_4295 23S ribosomal RNA (NCBI) 14, 310
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for RSP_2807
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend