Organism : Bacillus cereus ATCC14579 | Module List :
BC3287

hypothetical protein (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC3287
(Mouseover regulator name to see its description)

BC3287 is regulated by 34 influences and regulates 0 modules.
Regulators for BC3287 (34)
Regulator Module Operator
BC0042 404 tf
BC0224 404 tf
BC0647 404 tf
BC0657 404 tf
BC0882 404 tf
BC1032 404 tf
BC1673 404 tf
BC1698 404 tf
BC1710 404 tf
BC1731 404 tf
BC1884 404 tf
BC2903 404 tf
BC2904 404 tf
BC3400 404 tf
BC3449 404 tf
BC4029 404 tf
BC4650 404 tf
BC4672 404 tf
BC5059 404 tf
BC5363 404 tf
BC0224 460 tf
BC0518 460 tf
BC1296 460 tf
BC1673 460 tf
BC2444 460 tf
BC2904 460 tf
BC3069 460 tf
BC3389 460 tf
BC3493 460 tf
BC3497 460 tf
BC4076 460 tf
BC4211 460 tf
BC4650 460 tf
BC4902 460 tf

Warning: BC3287 Does not regulate any modules!

Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4718 1.80e+05 GAGAcC
Loader icon
4719 2.50e+01 GattgCTTTTTtcT
Loader icon
4830 2.70e-03 aGGaGG
Loader icon
4831 1.60e+01 atGtaAaAAGaAatgGaagg
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC3287

Warning: No Functional annotations were found!

Module neighborhood information for BC3287

BC3287 has total of 50 gene neighbors in modules 404, 460
Gene neighbors (50)
Gene Common Name Description Module membership
BC0359 BC0359 IG hypothetical 17967 (NCBI ptt file) 276, 404
BC0920 BC0920 hypothetical Cytosolic Protein (NCBI ptt file) 223, 404
BC1076 BC1076 Methicillin resistance mecR1 protein (NCBI ptt file) 404, 435
BC1107 BC1107 hypothetical protein (NCBI ptt file) 276, 404
BC1109 BC1109 hypothetical protein (NCBI ptt file) 85, 404
BC1118 BC1118 Two-component sensor kinase yvrG (NCBI ptt file) 230, 460
BC1311 BC1311 Small acid-soluble spore protein (NCBI ptt file) 208, 460
BC1574 BC1574 IAA acetyltransferase (NCBI ptt file) 223, 460
BC1673 BC1673 Transcriptional regulator (NCBI ptt file) 460, 522
BC1674 BC1674 Branched-chain amino acid transport protein azlC (NCBI ptt file) 460, 522
BC1794 BC1794 Oligopeptide-binding protein oppA (NCBI ptt file) 97, 404
BC1795 BC1795 hypothetical protein (NCBI ptt file) 460, 524
BC1802 BC1802 Cell wall endopeptidase, family M23/M37 (NCBI ptt file) 172, 404
BC2027 BC2027 Fosfomycin resistance protein (NCBI ptt file) 375, 404
BC2028 BC2028 hypothetical Cytosolic Protein (NCBI ptt file) 375, 404
BC2029 BC2029 Phosphoglycerate mutase (NCBI ptt file) 392, 404
BC2086 BC2086 hypothetical protein (NCBI ptt file) 202, 404
BC2093 BC2093 hypothetical protein (NCBI ptt file) 208, 460
BC2170 BC2170 Sodium-dependent leucine transporter (NCBI ptt file) 297, 460
BC2171 BC2171 Proline iminopeptidase (NCBI ptt file) 297, 460
BC2330 BC2330 Zn-dependent hydrolase (NCBI ptt file) 453, 460
BC2704 BC2704 Serine protease (NCBI ptt file) 432, 460
BC2710 BC2710 NADPH-dependent glutamate synthase beta chain and related oxidoreductases (NCBI ptt file) 460, 462
BC2847 BC2847 Ribosomal-protein-alanine acetyltransferase (NCBI ptt file) 404, 489
BC3027 BC3027 hypothetical protein (NCBI ptt file) 460, 525
BC3068 BC3068 Kinase autophosphorylation inhibitor kipI (NCBI ptt file) 460, 525
BC3069 BC3069 Transcriptional regulator kipR (NCBI ptt file) 460, 525
BC3135 BC3135 Carboxymethylenebutenolidase-related protein (NCBI ptt file) 256, 460
BC3237 BC3237 Chitin binding protein (NCBI ptt file) 308, 404
BC3259 BC3259 hypothetical Membrane Spanning Protein (NCBI ptt file) 404, 460
BC3267 BC3267 hypothetical protein (NCBI ptt file) 404, 411
BC3268 BC3268 Syd protein (NCBI ptt file) 404, 411
BC3274 BC3274 hypothetical protein (NCBI ptt file) 404, 502
BC3284 BC3284 hypothetical protein (NCBI ptt file) 404, 460
BC3287 BC3287 hypothetical protein (NCBI ptt file) 404, 460
BC3300 BC3300 hypothetical protein (NCBI ptt file) 10, 404
BC3520 BC3520 Methyl-accepting chemotaxis protein (NCBI ptt file) 460, 492
BC3764 BC3764 NAD(FAD)-utilizing dehydrogenases (NCBI ptt file) 308, 460
BC4028 BC4028 hypothetical Membrane Spanning Protein (NCBI ptt file) 60, 404
BC4029 BC4029 Transcriptional regulator, PadR family (NCBI ptt file) 404, 424
BC4264 BC4264 Phosphoglucomutase (NCBI ptt file) 60, 460
BC4372 BC4372 Penicillin-binding protein (NCBI ptt file) 223, 404
BC4646 BC4646 Small acid-soluble spore protein (NCBI ptt file) 254, 460
BC4782 BC4782 hypothetical protein (NCBI ptt file) 172, 404
BC4822 BC4822 hypothetical protein (NCBI ptt file) 172, 404
BC4948 BC4948 Internalin G (NCBI ptt file) 230, 460
BC4949 BC4949 hypothetical protein (NCBI ptt file) 230, 460
BC5108 BC5108 Zinc finger protein (NCBI ptt file) 254, 460
BC5274 BC5274 UDP-N-acetylglucosamine 4,6-dehydratase (NCBI ptt file) 460, 492
BC5275 BC5275 UTP--glucose-1-phosphate uridylyltransferase (NCBI ptt file) 460, 492
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC3287
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend