Organism : Bacillus cereus ATCC14579 | Module List :
BC4670

putative transcriptional regulator (NCBI ptt file)

CircVis
Functional Annotations (0)

Warning: No Functional annotations were found!

GeneModule member RegulatorRegulator MotifMotif

Cytoscape Web
Regulation information for BC4670
(Mouseover regulator name to see its description)

BC4670 is regulated by 22 influences and regulates 28 modules.
Regulators for BC4670 (22)
Regulator Module Operator
BC0518 119 tf
BC1710 119 tf
BC1936 119 tf
BC2434 119 tf
BC4256 119 tf
BC4670 119 tf
BC4703 119 tf
BC4714 119 tf
BC5010 119 tf
BC5481 119 tf
BC0586 107 tf
BC0648 107 tf
BC0880 107 tf
BC1356 107 tf
BC1490 107 tf
BC2914 107 tf
BC4029 107 tf
BC4256 107 tf
BC4670 107 tf
BC4703 107 tf
BC5074 107 tf
BC5222 107 tf
Regulated by BC4670 (28)
Module Residual Genes
1 0.47 23
28 0.43 27
51 0.40 16
70 0.38 20
74 0.42 23
76 0.54 35
96 0.60 20
107 0.29 16
110 0.29 16
119 0.38 27
129 0.37 23
152 0.27 15
169 0.31 16
181 0.41 20
233 0.31 19
262 0.41 24
326 0.28 16
347 0.44 20
371 0.31 17
425 0.39 21
426 0.31 13
438 0.43 25
475 0.57 32
480 0.44 18
484 0.49 19
506 0.56 15
507 0.34 16
509 0.44 25
Motif information (de novo identified motifs for modules)

There are 4 motifs predicted.

Motif Table (4)
Motif Id e-value Consensus Motif Logo
4130 5.30e-04 AGGggG
Loader icon
4131 1.00e+04 ggTGG.aGAg
Loader icon
4154 1.20e+00 TaggagAGGAgaGat
Loader icon
4155 4.20e+02 at.taTg.TataaTaaAc.tAaa
Loader icon
Motif Help

Transcription factor binding motifs help to elucidate regulatory mechanism. cMonkey integrates powerful de novo motif detection to identify conditionally co-regulated sets of genes. De novo predicted motifs for each module are listed in the module page as motif logo images along with associated prediction statistics (e-values). The main module page also shows the location of these motifs within the upstream sequences of the module member genes.

Motifs of interest can be broadcasted to RegPredict (currently only available for Desulfovibrio vulgaris Hildenborough) in order to compare conservation in similar species. This integrated motif prediction and comparative analysis provides an additional checkpoint for regulatory motif prediction confidence.

Motif e-value: cMonkey tries to identify two motifs per modules in the upstream sequences of the module member genes. Motif e-value is an indicative of the motif co-occurences between the members of the module.Smaller e-values are indicative of significant sequence motifs. Our experience showed that e-values smaller than 10 are generally indicative of significant motifs.

Functional Enrichment for BC4670

Warning: No Functional annotations were found!

Module neighborhood information for BC4670

BC4670 has total of 41 gene neighbors in modules 107, 119
Gene neighbors (41)
Gene Common Name Description Module membership
BC0246 BC0246 hydrolase (HAD superfamily) (NCBI ptt file) 107, 129
BC0291 BC0291 AT-rich DNA-binding protein (NCBI ptt file) 119, 187
BC0472 BC0472 hypothetical protein (NCBI ptt file) 28, 119
BC0792 BC0792 hypothetical Cytosolic Protein (NCBI ptt file) 74, 119
BC1385 BC1385 Thioredoxin (NCBI ptt file) 107, 110
BC1498 BC1498 SSU ribosomal protein S1P (NCBI ptt file) 107, 152
BC1806 BC1806 2-dehydropantoate 2-reductase (NCBI ptt file) 107, 233
BC2011 BC2011 Non-specific DNA-binding protein Dps / Iron-binding ferritin-like antioxidant protein / Ferroxidase (NCBI ptt file) 119, 129
BC2012 BC2012 hypothetical protein (NCBI ptt file) 119, 166
BC2199 BC2199 hypothetical protein (NCBI ptt file) 119, 438
BC2213 BC2213 Pyrazinamidase (NCBI ptt file) 119, 438
BC3974 BC3974 Polypeptide deformylase (NCBI ptt file) 119, 129
BC4091 BC4091 Ferric uptake regulation protein (NCBI ptt file) 118, 119
BC4094 BC4094 ADP-ribose pyrophosphatase (NCBI ptt file) 107, 110
BC4139 BC4139 hypothetical protein (NCBI ptt file) 28, 119
BC4143 BC4143 Peptidase T (NCBI ptt file) 107, 110
BC4145 BC4145 hypothetical protein (NCBI ptt file) 74, 119
BC4151 BC4151 hypothetical protein (NCBI ptt file) 107, 152
BC4521 BC4521 Thioredoxin (NCBI ptt file) 107, 166
BC4633 BC4633 hypothetical Membrane Spanning Protein (NCBI ptt file) 107, 507
BC4636 BC4636 MutT/nudix family protein (NCBI ptt file) 119, 438
BC4639 BC4639 Thiol peroxidase (NCBI ptt file) 107, 110
BC4670 BC4670 putative transcriptional regulator (NCBI ptt file) 107, 119
BC4678 BC4678 Aminopeptidase (NCBI ptt file) 107, 119
BC4702 BC4702 Xaa-His dipeptidase (NCBI ptt file) 74, 119
BC4703 BC4703 Transcriptional regulator, DeoR family (NCBI ptt file) 119, 129
BC4714 BC4714 CarD-like transcriptional regulator (NCBI ptt file) 1, 119
BC4757 BC4757 Molybdopterin-guanine dinucleotide biosynthesis protein A (NCBI ptt file) 74, 119
BC4758 BC4758 Molybdenum cofactor biosynthesis protein B (NCBI ptt file) 119, 273
BC4797 BC4797 hypothetical protein (NCBI ptt file) 119, 501
BC4801 BC4801 Phage shock protein A (NCBI ptt file) 119, 129
BC4921 BC4921 Cytosol aminopeptidase (NCBI ptt file) 107, 322
BC4926 BC4926 Thioredoxin reductase (NCBI ptt file) 107, 322
BC4935 BC4935 HESB protein (NCBI ptt file) 1, 119
BC4936 BC4936 Diaminopimelate epimerase (NCBI ptt file) 119, 273
BC4992 BC4992 Arsenate reductase family protein (NCBI ptt file) 119, 126
BC5008 BC5008 hypothetical Cytosolic Protein (NCBI ptt file) 107, 507
BC5197 BC5197 Transcriptional regulator, MarR family (NCBI ptt file) 1, 119
BC5413 BC5413 Phosphomethylpyramidine kinase (NCBI ptt file) 107, 110
BC5437 BC5437 hypothetical Membrane Spanning Protein (NCBI ptt file) 119, 438
BC5481 BC5481 Stage 0 sporulation protein J (NCBI ptt file) 28, 119
Gene Page Help

Network Tab

If the gene is associated with a module(s), its connection to given modules along with other members of that module are shown as network by using CytoscapeWeb. In this view, each green colored circular nodes represent module member genes, purple colored diamonds represent module motifs and red triangles represent regulators. Each node is connected to module (Bicluster) via edges. This representation provides quick overview of all genes, regulators and motifs for modules. It also allows one to see shared genes/motifs/regulators among diferent modules.

Network representation is interactive. You can zoom in/out and move nodes/edges around. Clicking on a node will open up a window to give more details. For genes, Locus tag, organism, genomic coordinates, NCBI gene ID, whether it is transcription factor or not and any associated functional information will be shown. For regulators, number of modules are shown in addition to gene details. For motifs, e-value, consensus sequence and sequence logo will be shown. For modules, expression profile plot, motif information, functional associations and motif locations for each member of the module will be shown.
You can pin information boxes by using button in the box title and open up additional ones on the same screen for comparative analysis.

Regulation Tab

Regulation tab for each gene includes regulatory influences such as environmental factors or transcription factors or their combinations identified by regulatory network inference algorithms.

If the gene is a member of a module, regulators influencing that module are also considered to regulate the gene. Regulators table list total number of regulatory influences, regulators, modules and type of the influence.

You can see description of the regulator inside the tooltip when you mouseover. In certain cases the regulatory influence is predicted to be the result of the combination of two influences. These are indicated as combiner in the column labeled "Operator".

For transcription factors, an additional table next to regulator table will be show. This table show modules that are influenced by the transcription factor.

Motifs Tab

Network inference algorithm uses de novo motif prediction for assigning genes to modules. If there are any motifs identified in the upstream region of a gene, the motif will be shown here. For each motif sequence logo, consensus and e-value will be shown.

Functions Tab

Identification of functional enrichment for the module members is important in associating predicted motifs and regulatory influences with pathways. As described above, the network inference pipeline includes a functional enrichment module by which hypergeometric p-values are used to identify over representation of functional ontology terms among module members.

Network Portal presents functional ontologies from KEGG, GO, TIGRFAM, and COG as separate tables that include function name, type, corrected and uncorrected hypergeometric p-values, and the number of genes assigned to this category out of total number of genes in the module.

Module Members Tab

Identity of gene members in a module may help to identify potential interactions between different functional modules. Therefore, neighbor genes that share the same module(s) with gene under consideration are shown here. For each memebr, gene name, description and modules that contain it are listed.

Help Tab

This help page. More general help can be accessed by clicking help menu in the main navigation bar.

Social Tab

Network Portal is designed to promote collaboration through social interactions. Therefore interested researchers can share information, questions and updates for a particular gene.

Users can use their Disqus, Facebook, Twitter or Google accounts to connect to this page (We recommend Google). Each module and gene page includes comments tab that lists history of the interactions for that gene. You can browse the history, make updates, raise questions and share these activities with social web.

In the next releases of the network portal, we are planning to create personal space for each user where you can share you space that contains all the analysis steps you did along with relevant information.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend
Comments for BC4670
Please add your comments for this gene by using the form below. Your comments will be publicly available.

comments powered by Disqus

Gene Help

Overview

Gene landing pages present genomic, functional, and regulatory information for individual genes. A circular visualization displays connections between the selected gene and genes in the same modules, with as edges drawn between the respective coordinates of the whole genome.

The gene page also lists functional ontology assignments, module membership, and motifs associated with these modules. Genes in the network inherit regulatory influences from the modules to which they belong. Therefore, the regulatory information for each gene is a collection of all regulatory influences on these modules. These are listed as a table that includes influence name, type, and target module. If the gene is a transcription factor, its target modules are also displayed in a table that provides residual values and number of genes.

CircVis

Our circular module explorer is adapted from visquick originally developed by Dick Kreisberg of Ilya Shmulevich lab at ISB for The Cancer Genome Atlas. We use simplified version of visquick to display distribution of module members and their interactions across the genome. This view provides summary of regulation information for a gene. The main components are;
  • 1. All genomic elements for the organism are represented as a circle and each element is separated by black tick marks. In this example chromosome and pDV represent main chromosome and plasmid for D. vulgaris Hildenborough, respectively.
  • 2. Source gene
  • 3. Target genes (other module members)
  • 4. Interactions between source and target genes for a particular module
  • 5. Module(s) that source gene and target genes belong to
  • 6. Visualisation legend